51单片机——数码管
一、数码管原理图

我们发现,总共有8个数码管。
它们的上面接8个LED,用来控制选择哪个数码管。例如要控制第三个数码管,就让LED6为0,其他为1,那LED又接到哪呢?
二、LED

由图可以看出,这个一个138译码器,我们通过控制P22,P23,P24进而控制8个LED。例如要让第三个数码管LED6亮,LED6对应Y5,5的二进制是101,所以让P22=1,P23=0,P24=1。
三、数码管显示

通过一二,我们可以选择哪个数码管,现在要控制选择的数码管的显示。
我们可以发现每个数码管都有a,b,c,d...,正好对应下面8条线a,b,c,d...,而a,b,c,d...又对应左边P00,P01...
例如要显示6,需要让afgedc亮,b,dp不亮。
a对应P00,所以P00=1。
b对应P01,所以P01=0。
cd亮,对应P02,P03=1。
。。。。
最后,P0=0111 1101=0x7D
四、代码
#include <STC89C5xRC.H>
unsigned char NixieTable[]={
0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71, 0x00};
void Nixie(unsigned char Location,Number)
{
switch(Location)
{
case 1:
P24=1;P23=1;P22=1;break;
case 2:
P24=1;P23=1;P22=0;break;
case 3:
P24=1;P23=0;P22=1;break;
case 4:
P24=1;P23=0;P22=0;break;
case 5:
P24=0;P23=1;P22=1;break;
case 6:
P24=0;P23=1;P22=0;break;
case 7:
P24=0;P23=0;P22=1;break;
case 8:
P24=0;P23=0;P22=0;break;
}
P0=NixieTable[Number];
}
void main()
{
// P24=1; //Controls a nixie tube
// P23=0;
// P22=1;
// P0=0x7D; //value is 6
Nixie(3,6);
while(1)
{
}
}
自定义Nixie函数,负责选择数码管和显示数字。传入两个参数,第一个参数代表第几个数码管,第二个参数代表显示数字几。
Nixie(3,6),3对应Location,代表第三个数码管。由本篇第二节可知,第三个数码管对应LED6,LED6对应101。
6对应显示数字6,由本篇第三节可知,数字6对应0x7d。
相关文章:
51单片机——数码管
一、数码管原理图 我们发现,总共有8个数码管。 它们的上面接8个LED,用来控制选择哪个数码管。例如要控制第三个数码管,就让LED6为0,其他为1,那LED又接到哪呢? 二、LED 由图可以看出,这个一个1…...
`re.compile(r“(<.*?>)“)` 如何有效地从给定字符串中提取出所有符合 `<...>` 格式的引用
regexp re.compile(r"(<.*?>)") 这行代码是在Python中使用正则表达式的一个示例,具体含义如下: re.compile(): 这个函数来自Python的 re(正则表达式)模块,用于将一个正则表达式模式编译成一个正则表…...
算法打卡:第十一章 图论part01
今日收获:图论理论基础,深搜理论基础,所有可达路径,广搜理论基础(理论来自代码随想录) 1. 图论理论基础 (1)邻接矩阵 邻接矩阵存储图,x和y轴的坐标表示节点的个数 优点…...
为C#的PetaPoco组件增加一个批量更新功能(临时表模式)
总有一些数据是需要批量更新的,并且更新的字段,每个数据都不一样。 为了实现这样一个功能,写了这样一个方法: using System.Linq.Expressions; using System.Reflection; using System.Text; using NetRube.Data; using PetaPoc…...
Spring实战——入门讲解
博客主页: 南来_北往 系列专栏:Spring Boot实战 Spring介绍 Spring实战的入门讲解主要涵盖了Spring框架的基本概念、核心功能以及应用场景。以下是关于Spring实战入门的具体介绍: Spring框架概述:Spring是一个轻量级的Java开发框架…...
MTK芯片机型的“工程固件” 红米note9 5G版资源预览 写入以及改写参数相关步骤解析
小米机型:小米5 小米5x 米6 米6x 米8 米9 米10系列 米11系列 米12系列 mix mix2 mix2s mix3 max max2 max3 note3 8se 9se cc9系列 米play 平板系列等分享 红米机型:红米note4 红米note4x 红米note5 红米note6 红米note7 红米note8 红米note8pro 红米s2 红米note7pro 红米…...
[Golang] Context
[Golang] Context 文章目录 [Golang] Context什么是context创建context创建根context创建context context的作用并发控制context.WithCancelcontext.WithDeadlinecontext.WithTimeoutcontext.WithValue 什么是context Golang在1.7版本中引入了一个标准库的接口context…...
【JAVA集合总结-壹】
文章目录 synchronized 的实现原理以及锁优化?ThreadLocal原理,使用注意点,应用场景有哪些?synchronized和ReentrantLock的区别?说说CountDownLatch与CyclicBarrier 区别Fork/Join框架的理解为什么我们调用start()方法…...
Mysql梳理7——分页查询
目录 7、分页查询 7.1 背景 7.2 实现规则 分页原理 7.3 使用 LIMIT 的好处 7、分页查询 7.1 背景 背景1:查询返回的记录太多了,查看起来很不方便,怎么样能够实现分页查询呢? 背景2:表里有 4 条数据,…...
智能制造与工业互联网公益联播∣企企通副总经理杨华:AI的浪潮下,未来智慧供应链迭代方向
近两年在IT圈子里面,AI毫无疑问是最火的一个词语,最近的ChatGPT、文心一言、通义千问,从千亿参数到万亿参数,再往前就是Sora文生视频异军突起... 在人工智能的浪潮下,AI之于供应链的价值体现在哪些地方?其发…...
《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理
文章目录 一、卷积神经网络的简单介绍二、工作原理(还未写完)1.输入层2.卷积层3.池化层4.全连接层5.输出层 一、卷积神经网络的简单介绍 基本概念 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想…...
数据结构:线性表
1、线性表概述 1.1线性表的定义 线性表(list):零个或多个数据元素的有限序列。 简单地来说,我们可以用下面这张图来描述一个线性表: 1.2 线性表的存储结构 1.2.1顺序存储结构——顺序表 顺序表是将数据全部存储到…...
Ansible PlayBook实践案例
一、PlayBook介绍 1.什么是playbook playbook 顾名思义,即剧本,现实生活中演员按照剧本表演,在 ansible 中,由被控计算机表演,进行安装,部署应用,提供对外的服务等,以及组织计算机处理各种各样…...
Tomcat后台弱口令部署war包
1.环境搭建 cd /vulhub/tomcat/tomcat8 docker-compose up -d 一键启动容器 2.访问靶场 点击Manager App tomcat8的默认用户名和密码都是tomcat进行登录 3.制作war包 先写一个js的一句话木马 然后压缩成zip压缩包 最后修改后缀名为war 4.在网站后台上传war文件 上传war文件…...
胤娲科技:DeepMind的FermiNet——带你穿越“薛定谔的早餐桌”
当AI遇上量子迷雾,FermiNet成了你的“量子导航仪” 想象一下,你早晨醒来,发现家里的厨房变成了薛定谔的实验室,你的咖啡杯和吐司同时处于“存在与不存在”的叠加态。 你伸手去拿,却不确定会不会摸到冰冷的空气或是热腾…...
迅为iTOP-STM32MP157开发板板载4G接口(选配)_千兆以太网_WIFI蓝牙模块_HDMI_CAN_RS485_LVDS接口等
迅为ITOP-STM32MP157是基于ST的STM32MP157芯片开发的一款开发平台。在STM32MP157开发平台上,我们也做了比较多的创新,其中重要的一点就是,iTOP-STM32MP157核心板电源管理采用ST全新配套研制的PMIC电源管理芯片STPMU1A。为整个系统的稳定运行提…...
Android Choreographer 监控应用 FPS
Choreographer 是 Android 提供的一个强大的工具类,用于协调动画、绘制和视图更新的时间。它的主要作用是协调应用的绘制过程,以确保流畅的用户体验。Choreographer 也可以帮助我们获取帧时间信息,从而为性能监测和优化提供重要的数据支持。 …...
关于 mybatis-plus-boot-starter 与 mybatis-spring-boot-starter 的错误
不是知道你是否 出现过这样的错误 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 经过各种度娘,无非就是让你检查三种情况 情况一:mapper.xml没有按照传统的maven架构进行放置 情况二:mybatis的配置信…...
NLP 文本分类任务核心梳理
解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据,核心解决方案: 自己构造训练样本 数据增强,如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…...
k8s中pod的创建过程和阶段状态
管理k8s集群 kubectl k8s中有两种用户 一种是登录的 一种是/sbin/nologin linux可以用密码登录,也可以用证书登录 k8s只能用证书登录 谁拿到这个证书,谁就可以管理集群 在k8s中,所有节点都被网络组件calico设置了路由和通信 所以pod的ip是可以…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
