当前位置: 首页 > news >正文

sklearn特征选取之RFE

sklearn.feature_selection.RFE 是一种递归特征消除(Recursive Feature Elimination, RFE)方法,用于通过反复训练模型和消除不重要的特征,逐步减少特征数量,最终选择最重要的特征。它是一种用于特征选择的算法,特别适合线性模型或其他对特征权重敏感的模型。

1. 语法

from sklearn.feature_selection import RFERFE(estimator, n_features_to_select=None, step=1, verbose=0)

2. 参数说明

  • estimator: 模型对象。用于拟合数据的学习器,它需要有一个 coef_feature_importances_ 属性,可以是诸如线性回归、决策树等模型。例如,LinearRegression()LogisticRegression()DecisionTreeClassifier() 等。
  • n_features_to_select: 整数或 None。要选择的特征数量。如果为 None,则选择一半的特征。
  • step: 整数或浮点数。每次迭代中要删除的特征数量:
    • 如果是整数,则每次移除指定数量的特征。
    • 如果是浮点数(范围为 0 到 1),则每次移除当前剩余特征数量的一部分(比例)。
  • verbose: 整数。控制冗长模式,设置为 1 时,会输出详细的进度信息,通常用于调试。

3. 返回值

  • RFE.fit(X, y): 返回拟合好的 RFE 对象,可以查看和分析所选择的特征。
    • support_: 一个布尔数组,指示哪些特征是被选中的(True 表示被选中)。
    • ranking_: 每个特征的排名,数值越小表示该特征越重要,1 表示被选中的特征。
    • n_features_: 被选择的特征数量。

4. 示例

(1) 基本用法:选择 5 个特征
from sklearn.datasets import make_friedman1
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression# 生成样本数据
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)# 创建线性回归模型
model = LinearRegression()# 创建 RFE 对象,选择 5 个特征
rfe = RFE(estimator=model, n_features_to_select=5)# 训练 RFE
rfe.fit(X, y)# 查看哪些特征被选择了
print("Selected features:", rfe.support_)
print("Feature ranking:", rfe.ranking_)

输出:

Selected features: [False  True  True False  True False  True  True False False]
Feature ranking: [6 1 1 7 1 4 1 1 2 3]
  • rfe.support_ 输出一个布尔值数组,表示哪些特征被选择了(True 表示选中)。
  • rfe.ranking_ 输出特征的重要性排名,1 表示被选中的特征。
(2) 使用 step 参数递归减少特征
# 每次迭代移除 2 个特征
rfe = RFE(estimator=model, n_features_to_select=5, step=2)
rfe.fit(X, y)# 查看最终选择的特征
print("Selected features:", rfe.support_)
print("Feature ranking:", rfe.ranking_)
  • 使用 step=2,每次迭代中移除 2 个不重要的特征,直到剩下 5 个特征。
(3) 使用决策树进行特征选择
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target# 使用决策树模型
model = DecisionTreeClassifier()# 创建 RFE 对象,选择 2 个特征
rfe = RFE(estimator=model, n_features_to_select=2)
rfe.fit(X, y)# 输出选择的特征
print("Selected features:", rfe.support_)
print("Feature ranking:", rfe.ranking_)

输出:

Selected features: [ True False False  True]
Feature ranking: [1 3 2 1]
  • 通过决策树选择 2 个特征,输出显示第 1 和第 4 个特征被选择。

5. 应用场景

  • 降维: RFE 可以通过递归地删除不重要的特征,减少特征维度,有助于提高模型的性能并减少过拟合。
  • 特征选择: 通过选择对目标变量最重要的特征,RFE 可以提高模型的可解释性。
  • 模型优化: 减少不必要的特征有助于加快模型的训练速度。

6. 注意事项

  • 选择合适的 estimator: RFE 依赖于 estimatorcoef_feature_importances_ 属性,因此必须选择支持这些属性的模型,如线性回归、逻辑回归、决策树、随机森林等。
  • step 参数的设置: step 参数的选择可以影响计算效率。较大的 step 可以减少迭代次数,较小的 step 可以更精细地筛选特征。

7. 与其他特征选择方法的对比

  • SelectKBest: SelectKBest 是一种一次性选择前 k 个最重要特征的方法,而 RFE 是递归消除不重要特征,逐步选择最重要的特征。
  • RFECV: RFECV 是 RFE 的增强版,通过交叉验证自动选择最佳特征数量,而 RFE 需要手动指定特征数量。

RFE 是一个强大的特征选择工具,特别适合使用线性模型或决策树模型进行递归特征选择。

相关文章:

sklearn特征选取之RFE

sklearn.feature_selection.RFE 是一种递归特征消除(Recursive Feature Elimination, RFE)方法,用于通过反复训练模型和消除不重要的特征,逐步减少特征数量,最终选择最重要的特征。它是一种用于特征选择的算法&#xf…...

vue.js 展示树状结构数据,动态生成 HTML 内容

展示树状结构数据: 从 jsonData 读取树状结构的 JSON 数据,将其解析并生成 HTML 列表来展示。树状结构数据根据 id 和 label 属性组织,节点可以包含子节点 children。 展示评级信息: 从预定义的表单字段 form 中读取 arRateFlag 和…...

科技赋能安全,财谷通助力抖音小店腾飞!

在数字经济的浪潮中,短视频与直播带货已成为新时代的商业风口,抖音小店作为这一领域的佼佼者,正引领着无数小微商家踏上创业与转型的快车道。然而,随着市场的日益繁荣,如何有效管理店铺、提升运营效率、保障交易安全成…...

Redis安装教程

Redis安装详细教程 📖1.单机安装Redis✅安装Redis依赖✅上传安装包并解压✅启动🧊默认启动🧊指定配置启动🧊开机自启 📖2.Redis客户端✅Redis命令行客户端✅图形化桌面客户端🧊安装🧊建立连接 大…...

Idea集成docker实现镜像打包一键部署

1.Docker开启远程访问 #修改该Docker服务文件 vi /lib/systemd/system/docker.service#修改ExecStart这行 ExecStart/usr/bin/dockerd -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock将文件内的 ExecStart注释。 新增如上行。 ExecStart/usr/bin/dockerd -H fd:/…...

spring 注解 - @NotNull - 确保字段或参数值不为 null

NotNull 是 Bean Validation API(JSR 303/JSR 349)中的一个注解,用于确保一个字段或参数值不为 null。这个注解可以用于 Java 类的字段、方法的参数或者方法的返回值上,以确保在运行时这些值不为空。 使用场景 字段验证&#xf…...

408算法题leetcode--第13天

61. 旋转链表 61. 旋转链表思路:注释时间:O(n);空间:O(1) /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x…...

【MySQL】表的基本查询

目录 🌈前言🌈 📁 创建Creator 📂 插入数据 📂 插入否则更新 📂 替换 📁 读取Retrieve 📂 select列 📂 where条件 📂 结果排序 📂 筛选分页结果…...

李宏毅2023机器学习HW15-Few-shot Classification

文章目录 LinkTask: Few-shot ClassificationBaselineSimple—transfer learningMedium — FO-MAMLStrong — MAML Link Kaggle Task: Few-shot Classification The Omniglot dataset background set: 30 alphabetsevaluation set: 20 alphabetsProblem setup: 5-way 1-sho…...

API安全推荐厂商瑞数信息入选IDC《中国数据安全技术发展路线图》

近日,全球领先的IT研究与咨询公司IDC发布报告《IDC TechScape:中国数据安全技术发展路线图,2024》。瑞数信息凭借其卓越的技术实力和广泛的行业应用,被IDC评选为“增量型”技术曲线API安全的推荐厂商。 IDC指出,数据安…...

1.5 计算机网络的性能指标

参考:📕深入浅出计算机网络 目录 速率 带宽 吞吐量 时延 时延带宽积 往返时间 利用率 丢包率 速率 速率是指数据的传送速率(即每秒传送多少个比特),也称为数据率(Data Rate)或比特率&am…...

【已解决】IDEA鼠标光标与黑块切换问题,亲测有效

前言 前两天我妹妹说她室友的idea光标变成黑块状了,解决不了跑来问我,这是刚入门开发者经常遇到的问题,这篇文章介绍一下这两种方式,方便刚入门的小伙伴儿们更清楚地了解idea,使用idea。 希望这篇文章能够帮助到遇到…...

记一次sql查询优化

记一次sql查询优化 前言 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新。 作者:神的孩子都在歌唱 今天测试环境发现一个问题,就是测试同事在测试的时候,发现cpu一直居高不下,然…...

str函数的模拟(包括strn函数的模拟)

首先先说这些函数引用的头文件是<string.h> 1.strlen函数 int my_strlen(char* s1) { //这里只用最难的方法 if (*s1) { return my_strlen(s1 1) 1; } else return 0; } 这里使用了递归的方法&#xff08;不创建新的变量&#xff0…...

畅阅读微信小程序

畅阅读微信小程序 weixin051畅阅读微信小程序ssm 摘 要 随着社会的发展&#xff0c;社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景&#xff0c;运用软件工程原理和开发方法&#xff0c;它主要是采用j…...

RHEL7(RedHat红帽)软件安装教程

目录 1、下载RHEL7镜像 2、安装RedHat7 注&#xff1a;如果以下教程不想看&#xff0c;可以远程控制安装V:OYH-Cx330 【风险告知】 本人及本篇博文不为任何人及任何行为的任何风险承担责任&#xff0c;图解仅供参考&#xff0c;请悉知&#xff01;本次安装图解是在一个全新的演…...

CC 攻击:一种特殊的 DDoS 攻击

引言 分布式拒绝服务&#xff08;Distributed Denial of Service&#xff0c;简称 DDoS&#xff09;攻击是指攻击者利用多台计算机或其他网络资源对目标发起大量请求&#xff0c;使目标服务器不堪重负&#xff0c;无法正常响应合法用户的请求。CC&#xff08;Challenge Collap…...

掌上高考爬虫逆向分析

目标网站 aHR0cHM6Ly93d3cuZ2Fva2FvLmNuL3NjaG9vbC9zZWFyY2g/cmVjb21zY2hwcm9wPSVFNSU4QyVCQiVFOCU4RCVBRg 一、抓包分析 二、逆向分析 搜索定位加密参数 本地生成代码 var CryptoJS require(crypto-js) var crypto require(crypto);f "D23ABC#56"function v(t…...

忘了SD吧,现在是Flux的时代

Stable Diffusion大量人员离职&#xff0c;不过离职后核心人员依然从事相关工作&#xff0c;Flux就是SD的原班人马创作的。 在SD3后推出不久&#xff0c;Flux横空出世。 可以说&#xff0c;优秀的Flux和付费版的MJ效果相差不大&#xff08;前提是配置足够高&#xff0c;能进行…...

服务器安装openssh9.9p1

11.81.2.19 更新 SSL 备份原有配置 1.1 查看 openssl 版本 openssl version OpenSSL 1.0.2k-fips 26 Jan 20171.2 查看 openssl 路径 whereis openssl openssl: /usr/bin/openssl /usr/lib64/openssl /usr/include/openssl /usr/share/man/man1/openssl.1ssl.gz1.3 备份 op…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...