Python | 读取.dat 文件
写在前面
使用matlab可以输出为 .dat 或者 .mat 形式的文件,之前介绍过读取 .mat 后缀文件,今天正好把 .dat 的读取也记录一下。
读取方法
这里可以使用pandas库将其作为一个dataframe的形式读取进python,数据内容格式如下,根据空格分隔开分别为:
经度、纬度、年、月、日、时、分、秒、变量数值
0 88.486 10.181 2023.0 3.0 20.0 0.0 15.0 0.0 3329.973
1 88.486 10.181 2023.0 3.0 20.0 0.0 30.0 0.0 3330.019
2 88.486 10.181 2023.0 3.0 20.0 0.0 45.0 0.0 3330.043
3 88.486 10.181 2023.0 3.0 20.0 1.0 0.0 0.0 3330.077
由于原始的dat文件中是没有相关数据的信息的,这里为了方便后续处理,手动将其添加上相关的经纬度信息
需要注意的是,在直接将 DataFrame 传递给 pd.DataFrame 构造函数并指定列名时,如果原始 DataFrame 的列数和新列名的数量不匹配,可能会导致数据不一致,从而生成 NaN 值。使用 to_numpy() 方法将 DataFrame 转换为 NumPy 数组可以确保数据的一致性,因为它会忽略原始列名并仅保留数据。
- 读取数据
import pandas as pd
from datetime import datetime
import numpy as np
file_path = r'R:/ll/cj_YD_first_bpr_water_level.dat'df = pd.read_csv(file_path, header=None,sep=r'\s+')df

- 添加经纬度信息
df_from_array = pd.DataFrame(df.to_numpy(), columns=['lon', 'lat', 'year', 'month', 'day', 'hour', 'min', 'sec', 'water'])

- 将时间提取出来作为新的一列,方便后续绘图
df_from_array['datetime'] = df_from_array.apply(lambda row: datetime(year=int(row['year']),month=int(row['month']),day=int(row['day']),hour=int(row['hour']),minute=int(row['min']),second=int(row['sec'])),axis=1)
df_from_array

这里,做一个特殊的预处理,由于需要时刻的数据是相同的经纬度位置的,这里挑选出所有相同经纬度坐标点的数据
grouped = df_from_array.groupby(['lon', 'lat','datetime'])['water'].apply(list).reset_index()grouped

- 发现存在缺测的站点,剔除掉缺测的经纬度数据
grouped = grouped[(grouped['lon'] != -9999.0000) & (grouped['lat'] != -9999.0000)]
grouped['water'] = grouped['water'].apply(lambda x: x[0])
grouped

绘图
挑选相同站点,不同时间的数据绘制曲线,为了避免不同位置的站点的数据大小存在较大差异,设置不同的y轴来表征
fig, ax1 = plt.subplots(figsize=(15, 10), dpi=200)
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.sans-serif'] = ['Times New Roman']
plt.rcParams['font.size'] = 16
axes = [ax1]
colors = plt.cm.tab10.colors
lines = []
labels = []
for i, (_, coord) in enumerate(unique_coords.iterrows()):lon = coord['lon']lat = coord['lat']filtered_data = grouped[(grouped['lon'] == lon) & (grouped['lat'] == lat)]if i == 0:ax = ax1else:ax = ax1.twinx()axes.append(ax)ax.spines['right'].set_position(('outward', 80 * (i - 1))) color = colors[i % len(colors)]line, = ax.plot(filtered_data['datetime'], filtered_data['water'], color=color,linewidth=0.9, linestyle='-', label=f'Lon: {lon}, Lat: {lat}')ax.set_ylabel(f' (Lon: {lon}, Lat: {lat})')ax.yaxis.label.set_color(color)ax.tick_params(axis='y', colors=color)lines.append(line)labels.append(f'Lon: {lon}, Lat: {lat}')
ax1.legend(lines, labels, loc='best',ncols=2, bbox_to_anchor=(0.9, 1))
plt.xticks(rotation=55)
plt.grid()
fig.suptitle('Data Over Time for Different station', y=0.95)
plt.tight_layout()
plt.show()

总结
复习了一下使用pandas读取.dat文件的相关函数,以及pandas的一些基础命令,绘图多y轴的方法。相关数据和代码放到GitHub上
- https://github.com/Blissful-Jasper/jianpu_record
相关文章:
Python | 读取.dat 文件
写在前面 使用matlab可以输出为 .dat 或者 .mat 形式的文件,之前介绍过读取 .mat 后缀文件,今天正好把 .dat 的读取也记录一下。 读取方法 这里可以使用pandas库将其作为一个dataframe的形式读取进python,数据内容格式如下,根据…...
信息技术的变革与未来发展的思考
信息技术的变革与未来发展的思考 在21世纪,信息技术(IT)正在以前所未有的速度推动社会、经济、文化的深刻变革。无论是人工智能、大数据,还是云计算、物联网,信息技术的发展已经渗透到了各个行业,彻底改变…...
融会贯通记单词,绝对丝滑,一天轻松记几百
如果我将flower(花)、flat(公寓)、floor(地板)、plane(飞机)几个单词放在一起,你会怎么来记忆这样的一些单词呢? 我们会发现,我们首先可以将plane去掉,因为它看上去几乎就是一个异类。这样,我们首先就可以将…...
【计算机视觉】YoloV8-训练与测试教程
✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山冈! 💫 欢迎来到我的学习笔记! 制作数据集 Labelme 数据集 数据集选用自己标注的,可参考以下:…...
响应式布局-媒体查询父级布局容器
1.响应式布局容器 父局作为布局容器,配合自己元素实现变化效果,原理:在不通过屏幕下面吗,通过媒体查询来改变子元素的排列方式和大小,从而实现不同尺寸屏幕下看到不同的效果。 2.响应尺寸布局容器常见宽度划分 手机-…...
Android APN type 配置和问题
问题/疑问 如果APN配置了非法类型(代码没有定义的),则APN匹配加载的时候最终结果会是空类型。 那么到底是xml解析到数据库就是空type呢?还是Java代码匹配的时候映射是空的呢? Debug Log 尝试将原本的APN type加入ota或者新建一条ota type APN,检查log情况。 //Type有…...
前端mock了所有……
目录 一、背景描述 二、开发流程 1.引入Mock 2.创建文件 3.需求描述 4.Mock实现 三、总结 一、背景描述 前提: 事情是这样的,老板想要我们写一个demo拿去路演/拉项目,有一些数据,希望前端接一下,写几个表格&a…...
fiddler抓包10_列表显示请求方法
① 请求列表表头,鼠标悬停点击右键弹出选项菜单。 ② 点击“Customize columns”(定制列)。 ③ 弹窗中,“Collection”下拉列表选择“Miscellaneous”(更多字段)。 ④ “Field Name”选择“RequestMethod”…...
Win10系统复制、粘贴、新建、删除文件或文件夹后需要手动刷新的解决办法
有些win10系统可能会出现新建、粘贴、删除文件或文件夹后保持原来的状态不变,需要手动刷新,我这边新装的几个系统都有这个问题,已经困扰很久了,我从微软论坛和CSDN社区找了了很多方法都没解决,微软工程师给的建议包括重…...
BERT训练环节(代码实现)
1.代码实现 #导包 import torch from torch import nn import dltools #加载数据需要用到的声明变量 batch_size, max_len 1, 64 #获取训练数据迭代器、词汇表 train_iter, vocab dltools.load_data_wiki(batch_size, max_len) #其余都是二维数组 #tokens, segments, vali…...
必须执行该语句才能获得结果
UncategorizedSQLException: Error getting generated key or setting result to parameter object. Cause: com.microsoft.sqlserver.jdbc.SQLServerException: 必须执行该语句才能获得结果。 ; uncategorized SQLException; SQL state [null]; error code [0]; 必须执行该语句…...
AI论文写作可靠吗?分享5款论文写作助手ai免费网站
AI论文写作的可靠性是一个备受关注的话题。在当前的技术背景下,AI写作工具能够显著提高论文写作的效率和质量,但其可靠性和安全性仍需谨慎评估。 AI论文写作的可靠性 技术能力与限制 AI论文写作的质量很大程度上取决于用户提供的输入指令或素材的质量…...
AJAX 入门 day3 XMLHttpRequest、Promise对象、自己封装简单版的axios
目录 1.XMLHttpRequest 1.1 XMLHttpRequest认识 1.2 用ajax发送请求 1.3 案例 1.4 XMLHttpRequest - 查询参数 1.5 XMLHttpRequest - 数据提交 2.Promise 2.1 Promise认识 2.2 Promise - 三种状态 2.3 案例 3.封装简易版 axios 3.1 封装_简易axios_获取省份列表 3…...
oracle avg、count、max、min、sum、having、any、all、nvl的用法
组函数 having的使用 any的使用 all的使用 nvl 从执行结果来看,nvl(列名,默认值),nvl的作用就是如果列名所在的这一行出现空则用默认值替换...
Python一分钟:装饰器
一、装饰器基础 函数即对象 在python中函数可以作为参数传递,和任何其它对象一样如:str、int、float、list等等 def say_hello(name):return f"Hello {name}"def be_awesome(name):return f"Yo {name}, together were the awesomest!"def gr…...
Docker部署ddns-go教程(包含完整的配置过程)
本章教程教程,主要介绍如何用Docker部署ddns-go。 一、拉取容器 docker pull jeessy/ddns-go:v6.7.0二、运行容器 docker run -d \--name ddns-go \--restart unless-stopped \...
简单多状态dp第三弹 leetcode -买卖股票的最佳时机问题
309. 买卖股票的最佳时机含冷冻期 买卖股票的最佳时机含冷冻期 分析: 使用动态规划解决 状态表示: 由于有「买入」「可交易」「冷冻期」三个状态,因此我们可以选择用三个数组,其中: ▪ dp[i][0] 表示:第 i 天结束后,…...
游戏化在电子课程中的作用:提高参与度和学习成果
游戏化,即游戏设计元素在非游戏环境中的应用,已成为电子学习领域的强大工具。通过将积分、徽章、排行榜和挑战等游戏机制整合到教育内容中,电子课程可以变得更具吸引力、激励性和有效性。以下是游戏化如何在转变电子学习中发挥重要作用&#…...
php+mysql安装
1.卸载mysql 没启动不停止 2.下载 3.解压 4.点击安装 5.出现成功 端口占用修改 修改端口89或者87 可视化扩展 修改后重启 开启扩展...
音视频入门基础:FLV专题(5)——FFmpeg源码中,判断某文件是否为FLV文件的实现
一、引言 通过FFmpeg命令: ./ffmpeg -i XXX.flv 可以判断出某个文件是否为FLV文件: 所以FFmpeg是怎样判断出某个文件是否为FLV文件呢?它内部其实是通过flv_probe函数来判断的。从《FFmpeg源码:av_probe_input_format3函数和AVI…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
