【计算机视觉】YoloV8-训练与测试教程


✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛)
🌈 个人Motto:他强任他强,清风拂山冈!
💫 欢迎来到我的学习笔记!

制作数据集
Labelme 数据集
- 数据集选用自己标注的,可参考以下:
['c17', 'c5', 'helicopter', 'c130', 'f16', 'b2',
'other', 'b52', 'kc10', 'command', 'f15', 'kc135', 'a10',
'b1', 'aew', 'f22', 'p3', 'p8', 'f35', 'f18', 'v22', 'f4',
'globalhawk', 'u2', 'su-27', 'il-38', 'tu-134', 'su-33',
'an-70', 'su-24', 'tu-22', 'il-76']
格式转换
- 将 Labelme 数据集转为 yolov8 格式的数据集,转换代码如下:
import os
import shutilimport numpy as np
import json
from glob import glob
import cv2
from sklearn.model_selection import train_test_split
from os import getcwddef convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def change_2_yolo5(files, txt_Name):imag_name = []for json_file_ in files:json_filename = labelme_path + json_file_ + ".json"out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')json_file = json.load(open(json_filename, "r", encoding="utf-8"))# image_path = labelme_path + json_file['imagePath']imag_name.append(json_file_ + '.jpg')height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shapefor multi in json_file["shapes"]:points = np.array(multi["points"])xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0label = multi["label"].lower()if xmax <= xmin:passelif ymax <= ymin:passelse:cls_id = classes.index(label)b = (float(xmin), float(xmax), float(ymin), float(ymax))bb = convert((width, height), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')# print(json_filename, xmin, ymin, xmax, ymax, cls_id)return imag_namedef image_txt_copy(files, scr_path, dst_img_path, dst_txt_path):""":param files: 图片名字组成的list:param scr_path: 图片的路径:param dst_img_path: 图片复制到的路径:param dst_txt_path: 图片对应的txt复制到的路径:return:"""for file in files:img_path = scr_path + fileprint(file)shutil.copy(img_path, dst_img_path + file)scr_txt_path = scr_path + file.split('.')[0] + '.txt'shutil.copy(scr_txt_path, dst_txt_path + file.split('.')[0] + '.txt')if __name__ == '__main__':classes = ['c17', 'c5', 'helicopter', 'c130', 'f16', 'b2','other', 'b52', 'kc10', 'command', 'f15', 'kc135', 'a10','b1', 'aew', 'f22', 'p3', 'p8', 'f35', 'f18', 'v22', 'f4','globalhawk', 'u2', 'su-27', 'il-38', 'tu-134', 'su-33','an-70', 'su-24', 'tu-22', 'il-76']# 1.标签路径labelme_path = "USA-Labelme/"isUseTest = True # 是否创建test集# 3.获取待处理文件files = glob(labelme_path + "*.json")files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]for i in files:print(i)trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)# splittrain_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)train_name_list = change_2_yolo5(train_files, "train")print(train_name_list)val_name_list = change_2_yolo5(val_files, "val")test_name_list = change_2_yolo5(test_files, "test")# 创建数据集文件夹。file_List = ["train", "val", "test"]for file in file_List:if not os.path.exists('./VOC/images/%s' % file):os.makedirs('./VOC/images/%s' % file)if not os.path.exists('./VOC/labels/%s' % file):os.makedirs('./VOC/labels/%s' % file)image_txt_copy(train_name_list, labelme_path, './VOC/images/train/', './VOC/labels/train/')image_txt_copy(val_name_list, labelme_path, './VOC/images/val/', './VOC/labels/val/')image_txt_copy(test_name_list, labelme_path, './VOC/images/test/', './VOC/labels/test/')
- 运行完成后就得到了
yolov8格式的数据集。
本地调试
- 下载与安装
● Github: GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite
● 也可以直接使用命令行:pip install。
● 下载到本地后解压,将生成的yolo数据集放到datasets(需要创建datasets 文件夹)文件夹下面,如下图:

- 安装库文件
- 安装必要的库文件,安装命令:
pip install opencv-pythonpip install numpy==1.23.5pip install pyyamlpip install tqdmpip install matplotlib
- 注意
numpy的版本,如果是 2.0 以上版本一定要把版本降下来。
- 创建配置文件
- 在根目录新建
VOC.yaml文件,添加内容:
train:./VOC/images/train # train images
val:./VOC/images/val # val images
test:./VOC/images/test # test images (optional)names: ['c17', 'c5', 'helicopter', 'c130', 'f16', 'b2','other', 'b52', 'kc10', 'command', 'f15', 'kc135', 'a10','b1', 'aew', 'f22', 'p3', 'p8', 'f35', 'f18', 'v22', 'f4','globalhawk', 'u2', 'su-27', 'il-38', 'tu-134', 'su-33','an-70', 'su-24', 'tu-22', 'il-76']
- 创建训练脚本:
- 新建
train.py,在train.py添加代码:
from ultralytics import YOLO
if __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/models/v8/yolov8l.yaml") # 从头开始构建新模型print(model.model)# Use the modelresults = model.train(data="VOC.yaml", epochs=100, device='0', batch=16, workers=0) # 训练模型
- 点击
run开始运行train.py进行训练。
实时目标检测代码实现
以下是一个使用 Python 和 OpenCV 实现实时目标检测的示例代码:
import cv2
from ultralytics import YOLO# 加载模型
model = YOLO('your_model_path.pt') # 替换为你的模型路径# 打开摄像头
cap = cv2.VideoCapture(0) # 0 表示默认摄像头,如果有多个摄像头可以调整这个参数while True:# 读取一帧图像ret, frame = cap.read()if not ret:break# 进行目标检测results = model(frame)# 在图像上绘制检测结果annotated_frame = results[0].plot()# 显示图像cv2.imshow('Real-time Object Detection', annotated_frame)# 按下 'q' 键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头和关闭窗口
cap.release()
cv2.destroyAllWindows()
基于丹摩智算的训练
创建一个实例,这个在我之前发布的与丹摩平台关联的文章很详细地提到过,可以跳转学习:【链接】
- 首先创建账号,登录;
- 然后点击
CPU云实例,开始创建实例; - 选择付费类型;
- 选择实力配置;
- 配置数据盘;
- 选择镜像Pytorch;
- 创建密钥对;
实例创建完后,就点击
JupyterLab进入控制台。

然后将我们刚才创建的工程压缩成 zip 的压缩包,等待上传。


点击,文件夹样子的标签,进入根目录,然后点击
↑,进入上传文件的页面。

选择文件,点击打开。

上传完成后,点击Termina就可以进入我们熟悉的命令行界面。

输入 ls,就可以看到我们刚才上传的压缩包。然后输入:
unzip ultralytics-main.zip
解压!
解压后就可以在左侧的目录中看到解压后的文件夹。点击进入。
点击train.py,Open With→Editor。

打开 train.py 后就可以修改 train.py 里面的参数了。
pip install opencv-python

通过以上步骤,你可以成功地进行 YoloV8 的训练和测试。无论是在本地还是基于丹摩智算平台,都能根据自己的需求进行模型的训练和优化。
在训练过程中,需要注意以下几点:
一、数据准备
- 确保标注的数据集准确无误,类别清晰明确。这将直接影响模型的训练效果和准确性。
- 在格式转换过程中,仔细检查转换后的数据集是否符合 YoloV8 的格式要求,避免出现错误。
二、参数调整
- 在本地调试和基于丹摩智算的训练中,可以根据实际情况调整训练参数,如 epochs(训练轮数)、batch(批大小)、device(使用的设备)等。不同的参数组合可能会对训练时间和模型性能产生影响。
- 对于复杂的数据集或特定的任务,可以尝试不同的模型架构和超参数,以获得更好的性能。
三、测试与评估
- 在测试阶段,使用不同的图像进行预测,观察模型的准确性和泛化能力。可以通过调整阈值等参数来优化预测结果。
- 对测试结果进行评估,如计算准确率、召回率、F1 值等指标,以了解模型的性能表现。
四、持续优化
- 根据测试结果和评估指标,对模型进行进一步的优化。可以尝试增加数据量、进行数据增强、调整模型结构等方法。
- 不断尝试新的技术和方法,以提高模型的性能和适用性。
总之,YoloV8 是一个强大的目标检测模型,通过合理的数据准备、参数调整和测试评估,可以获得良好的训练效果和准确的预测结果。希望本教程能够帮助你顺利地进行 YoloV8 的训练和测试,为你的目标检测任务提供有力的支持。

相关文章:
【计算机视觉】YoloV8-训练与测试教程
✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山冈! 💫 欢迎来到我的学习笔记! 制作数据集 Labelme 数据集 数据集选用自己标注的,可参考以下:…...
响应式布局-媒体查询父级布局容器
1.响应式布局容器 父局作为布局容器,配合自己元素实现变化效果,原理:在不通过屏幕下面吗,通过媒体查询来改变子元素的排列方式和大小,从而实现不同尺寸屏幕下看到不同的效果。 2.响应尺寸布局容器常见宽度划分 手机-…...
Android APN type 配置和问题
问题/疑问 如果APN配置了非法类型(代码没有定义的),则APN匹配加载的时候最终结果会是空类型。 那么到底是xml解析到数据库就是空type呢?还是Java代码匹配的时候映射是空的呢? Debug Log 尝试将原本的APN type加入ota或者新建一条ota type APN,检查log情况。 //Type有…...
前端mock了所有……
目录 一、背景描述 二、开发流程 1.引入Mock 2.创建文件 3.需求描述 4.Mock实现 三、总结 一、背景描述 前提: 事情是这样的,老板想要我们写一个demo拿去路演/拉项目,有一些数据,希望前端接一下,写几个表格&a…...
fiddler抓包10_列表显示请求方法
① 请求列表表头,鼠标悬停点击右键弹出选项菜单。 ② 点击“Customize columns”(定制列)。 ③ 弹窗中,“Collection”下拉列表选择“Miscellaneous”(更多字段)。 ④ “Field Name”选择“RequestMethod”…...
Win10系统复制、粘贴、新建、删除文件或文件夹后需要手动刷新的解决办法
有些win10系统可能会出现新建、粘贴、删除文件或文件夹后保持原来的状态不变,需要手动刷新,我这边新装的几个系统都有这个问题,已经困扰很久了,我从微软论坛和CSDN社区找了了很多方法都没解决,微软工程师给的建议包括重…...
BERT训练环节(代码实现)
1.代码实现 #导包 import torch from torch import nn import dltools #加载数据需要用到的声明变量 batch_size, max_len 1, 64 #获取训练数据迭代器、词汇表 train_iter, vocab dltools.load_data_wiki(batch_size, max_len) #其余都是二维数组 #tokens, segments, vali…...
必须执行该语句才能获得结果
UncategorizedSQLException: Error getting generated key or setting result to parameter object. Cause: com.microsoft.sqlserver.jdbc.SQLServerException: 必须执行该语句才能获得结果。 ; uncategorized SQLException; SQL state [null]; error code [0]; 必须执行该语句…...
AI论文写作可靠吗?分享5款论文写作助手ai免费网站
AI论文写作的可靠性是一个备受关注的话题。在当前的技术背景下,AI写作工具能够显著提高论文写作的效率和质量,但其可靠性和安全性仍需谨慎评估。 AI论文写作的可靠性 技术能力与限制 AI论文写作的质量很大程度上取决于用户提供的输入指令或素材的质量…...
AJAX 入门 day3 XMLHttpRequest、Promise对象、自己封装简单版的axios
目录 1.XMLHttpRequest 1.1 XMLHttpRequest认识 1.2 用ajax发送请求 1.3 案例 1.4 XMLHttpRequest - 查询参数 1.5 XMLHttpRequest - 数据提交 2.Promise 2.1 Promise认识 2.2 Promise - 三种状态 2.3 案例 3.封装简易版 axios 3.1 封装_简易axios_获取省份列表 3…...
oracle avg、count、max、min、sum、having、any、all、nvl的用法
组函数 having的使用 any的使用 all的使用 nvl 从执行结果来看,nvl(列名,默认值),nvl的作用就是如果列名所在的这一行出现空则用默认值替换...
Python一分钟:装饰器
一、装饰器基础 函数即对象 在python中函数可以作为参数传递,和任何其它对象一样如:str、int、float、list等等 def say_hello(name):return f"Hello {name}"def be_awesome(name):return f"Yo {name}, together were the awesomest!"def gr…...
Docker部署ddns-go教程(包含完整的配置过程)
本章教程教程,主要介绍如何用Docker部署ddns-go。 一、拉取容器 docker pull jeessy/ddns-go:v6.7.0二、运行容器 docker run -d \--name ddns-go \--restart unless-stopped \...
简单多状态dp第三弹 leetcode -买卖股票的最佳时机问题
309. 买卖股票的最佳时机含冷冻期 买卖股票的最佳时机含冷冻期 分析: 使用动态规划解决 状态表示: 由于有「买入」「可交易」「冷冻期」三个状态,因此我们可以选择用三个数组,其中: ▪ dp[i][0] 表示:第 i 天结束后,…...
游戏化在电子课程中的作用:提高参与度和学习成果
游戏化,即游戏设计元素在非游戏环境中的应用,已成为电子学习领域的强大工具。通过将积分、徽章、排行榜和挑战等游戏机制整合到教育内容中,电子课程可以变得更具吸引力、激励性和有效性。以下是游戏化如何在转变电子学习中发挥重要作用&#…...
php+mysql安装
1.卸载mysql 没启动不停止 2.下载 3.解压 4.点击安装 5.出现成功 端口占用修改 修改端口89或者87 可视化扩展 修改后重启 开启扩展...
音视频入门基础:FLV专题(5)——FFmpeg源码中,判断某文件是否为FLV文件的实现
一、引言 通过FFmpeg命令: ./ffmpeg -i XXX.flv 可以判断出某个文件是否为FLV文件: 所以FFmpeg是怎样判断出某个文件是否为FLV文件呢?它内部其实是通过flv_probe函数来判断的。从《FFmpeg源码:av_probe_input_format3函数和AVI…...
Tomcat 乱码问题彻底解决
1. 终端乱码问题 找到 tomcat 安装目录下的 conf ---> logging.properties .修改ConsoleHandler.endcoding GBK (如果在idea中设置了UTF-8字符集,这里就不需要修改) 2. CMD命令窗口设置编码 参考:WIN10的cmd查看编码方式&am…...
RGB颜色模型
RGB颜色模型是一种广泛应用于数字图像和计算机图形领域的颜色表示方法 一、基本概念 RGB 代表红色(Red)、绿色(Green)和蓝色(Blue)三种基本颜色。这些颜色被视为加色模型中的原色,意味着它们可…...
智能工厂的软件设计 创新型原始制造商(“创新工厂“)的Creator原型(统一行为理论)之2
Q8、今天我们继续昨天开始的 “智能工厂的软件设计”以“统一行为理论”为指导原则的 创新型原始制造商的Creator伪代码--创新工厂“原型”。这是在前述将“程序program”问题的三个体现“方面”(逻辑/语言/数学) 视为符号学的三分支(语用语义…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
