OpenAI API: How to catch all 5xx errors in Python?
题意:OpenAI API:如何在 Python 中捕获所有 5xx 错误?
问题背景:
I want to catch all 5xx errors (e.g., 500) that OpenAI API sends so that I can retry before giving up and reporting an exception.
我想捕获 OpenAI API 发送的所有 5xx 错误(例如,500),以便在放弃并报告异常之前进行重试。
Right now I'm basically doing the following:
现在我基本上是在做以下操作:
try:response = openai.ChatCompletion.create(req)
except InvalidRequestError as e:reportError
except ServiceUnavailableError as e:retry
except Exception as e:response = f"Exception: {e}"raise Exception(response)
Some 5xx errors are getting caught as unknown errors (last case) which I want to catch so that I can retry them as I do in the case of the ServiceUnavailableError. But I don't know how to go about catching all the 5xx errors for retry. The docs just talk about how to catch the specifically named errors.
一些 5xx 错误被当作未知错误(最后一种情况)捕获,我想捕获这些错误,以便像处理 `ServiceUnavailableError` 一样重试。但我不知道如何捕获所有 5xx 错误以进行重试。文档只提到如何捕获特定命名的错误。
问题解决:
All 5xx errors belong to the ServiceUnavailableError. Take a look at the official OpenAI documentation:
所有 5xx 错误都属于 `ServiceUnavailableError`。请查看官方的 OpenAI 文档:
| TYPE | OVERVIEW |
|---|---|
| APIError | Cause: Issue on our side. Solution: Retry your request after a brief wait and contact us if the issue persists. |
| Timeout | Cause: Request timed out. Solution: Retry your request after a brief wait and contact us if the issue persists. |
| RateLimitError | Cause: You have hit your assigned rate limit. Solution: Pace your requests. Read more in our Rate limit guide. |
| APIConnectionError | Cause: Issue connecting to our services. Solution: Check your network settings, proxy configuration, SSL certificates, or firewall rules. |
| InvalidRequestError | Cause: Your request was malformed or missing some required parameters, such as a token or an input. Solution: The error message should advise you on the specific error made. Check the documentation for the specific API method you are calling and make sure you are sending valid and complete parameters. You may also need to check the encoding, format, or size of your request data. |
| AuthenticationError | Cause: Your API key or token was invalid, expired, or revoked. Solution: Check your API key or token and make sure it is correct and active. You may need to generate a new one from your account dashboard. |
| ServiceUnavailableError | Cause: Issue on our servers. Solution: Retry your request after a brief wait and contact us if the issue persists. Check the status page. |
Handle the ServiceUnavailableError as follows:
如下处理 `ServiceUnavailableError`:
try:# Make your OpenAI API request hereresponse = openai.Completion.create(prompt="Hello world",model="text-davinci-003")except openai.error.ServiceUnavailableError as e:# Handle 5xx errors hereprint(f"OpenAI API request error: {e}")pass

相关文章:
OpenAI API: How to catch all 5xx errors in Python?
题意:OpenAI API:如何在 Python 中捕获所有 5xx 错误? 问题背景: I want to catch all 5xx errors (e.g., 500) that OpenAI API sends so that I can retry before giving up and reporting an exception. 我想捕获 OpenAI API…...
C++初阶学习——探索STL奥秘——标准库中的priority_queue与模拟实现
1.priority_queque的介绍 1.priority_queue中文叫优先级队列。优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。 2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元…...
PyTorch经典模型
PyTorch 经典模型教程 1. PyTorch 库架构概述 PyTorch 是一个广泛使用的深度学习框架,具有高度的灵活性和动态计算图的特性。它支持自动求导功能,并且拥有强大的 GPU 加速能力,适用于各种神经网络模型的训练与部署。 PyTorch 的核心架构包…...
C++ STL容器(三) —— 迭代器底层剖析
本篇聚焦于STL中的迭代器,同样基于MSVC源码。 文章目录 迭代器模式应用场景实现方式优缺点 UML类图代码解析list 迭代器const 迭代器非 const 迭代器 vector 迭代器const 迭代器非const迭代器 反向迭代器 迭代器失效参考资料 迭代器模式 首先迭代器模式是设计模式中…...
力扣416周赛
举报垃圾信息 题目 3295. 举报垃圾信息 - 力扣(LeetCode) 思路 直接模拟就好了,这题居然是中等难度 代码 public boolean reportSpam(String[] message, String[] bannedWords) {Map<String,Integer> map new HashMap<>()…...
vue 页面常用图表框架
在 Vue.js 页面中,常见的用于制作图表的框架或库有以下几种: ECharts: 官方网站: EChartsECharts 是一个功能强大、可扩展的图表库,支持多种图表类型,如柱状图、折线图、饼图等。Vue 集成: 可以使用 vue-echarts 插件,…...
spring 注解 - @PostConstruct - 用于初始化工作
PostConstruct 是 Java EE 5 中引入的一个注解,用于标注在方法上,表示该方法应该在依赖注入完成之后执行。这个注解是 javax.annotation 包的一部分,通常用于初始化工作,比如初始化成员变量或者启动一些后台任务。 在 Spring 框架…...
多机器学习模型学习
特征处理 import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit from sklearn.impute import SimpleImputer from sklearn.pipeline import FeatureUnion fr…...
【网页设计】前言
本专栏主要记录 “网页设计” 这一课程的相关笔记。 参考资料: 黑马程序员:黑马程序员pink老师前端入门教程,零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 教材:《Adobe创意大学 Dreamweaver CS6标准教材》《…...
STM32巡回研讨会总结(2024)
前言 本次ST公司可以说是推出了7大方面,几乎可以说是覆盖到了目前生活中的方方面面,下面总结下我的感受。无线类 支持多种调制模式(LoRa、(G)FSK、(G)MSK 和 BPSK)满足工业和消费物联网 (IoT) 中各种低功耗广域网 (LPWAN) 无线应…...
54 螺旋矩阵
解题思路: \qquad 这道题可以直接用模拟解决,顺时针螺旋可以分解为依次沿“右-下-左-上”四个方向的移动,每次碰到“边界”时改变方向,边界是不可到达或已经到达过的地方,会随着指针移动不断收缩。 vector<int>…...
基于STM32与OpenCV的物料搬运机械臂设计流程
一、项目概述 本文提出了一种新型的物流搬运机器人,旨在提高物流行业的物料搬运效率和准确性。该机器人结合了 PID 闭环控制算法与视觉识别技术,能够在复杂的环境中实现自主巡线与物料识别。 项目目标与用途 目标:设计一款能够自动搬运物流…...
[万字长文]stable diffusion代码阅读笔记
stable diffusion代码阅读笔记 获得更好的阅读体验可以转到我的博客y0k1n0的小破站 本文参考的配置文件信息: AutoencoderKL:stable-diffusion\configs\autoencoder\autoencoder_kl_32x32x4.yaml latent-diffusion:stable-diffusion\configs\latent-diffusion\lsun_churches-ld…...
watchEffect工作原理
watchEffect工作原理 自动依赖收集:watchEffect不需要明确指定要观察的响应式数据,它会自动收集回调函数中用到的所有响应式数据作为依赖。即时执行:watchEffect的回调函数会在组件的setup()函数执行时立即执行一次,以便能够立即…...
斐波那契数列
在 Python 3.11 中实现斐波那契数列的常见方式有多种,下面我将展示几种不同的实现方法,包括递归、迭代和使用缓存(动态规划)来优化递归版本。 1. 递归方式(最简单但效率较低) def fibonacci_recursive(n)…...
TCP并发服务器的实现
一请求一线程 问题 当客户端数量较多时,使用单独线程为每个客户端处理请求可能导致系统资源的消耗过大和性能瓶颈。 资源消耗: 线程创建和管理开销:每个线程都有其创建和销毁的开销,特别是在高并发环境中,这种开销…...
前端大屏自适应方案
一般后台管理页面,需要自适应的也就是大屏这一个,其他的尺寸我感觉用第三方框架继承好的就挺合适的,当然自适应方案也可以同步到所有页面,但我感觉除了 to c 的项目,不太需要所有页面自适应,毕竟都是查看和…...
16.3 k8s容器cpu内存告警指标与资源request和limit
本节重点介绍 : Guaranteed的pod Qos最高在生产环境中,如何设置 Kubernetes 的 Limit 和 Request 对于优化应用程序和集群性能至关重要。对于 CPU,如果 pod 中服务使用 CPU 超过设置的limits,pod 不会被 kill 掉但会被限制。如果没有设置 li…...
【计算机网络 - 基础问题】每日 3 题(二十)
✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏&…...
铰链损失函数
铰链损失函数(Hinge Loss)主要用于支持向量机(SVM)中,旨在最大化分类间隔。它的公式为: L ( y , f ( x ) ) max ( 0 , 1 − y ⋅ f ( x ) ) L(y, f(x)) \max(0, 1 - y \cdot f(x)) L(y,f(x))max(0,1−…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
