PyTorch经典模型
PyTorch 经典模型教程
1. PyTorch 库架构概述
PyTorch 是一个广泛使用的深度学习框架,具有高度的灵活性和动态计算图的特性。它支持自动求导功能,并且拥有强大的 GPU 加速能力,适用于各种神经网络模型的训练与部署。
PyTorch 的核心架构包括:
- 张量(Tensor)操作:PyTorch 的
Tensor
类是与 NumPy 类似的数据结构,并支持 GPU 加速的操作。 - 自动微分引擎(autograd):支持反向传播及自动求导,帮助轻松实现模型的训练。
- 模块(torch.nn.Module):用于定义神经网络的核心组件。
- 优化器(torch.optim):用于调整模型参数以最小化损失函数。
- DataLoader:用于处理大批量数据,支持批量加载和数据增强。
2. 官方文档链接
PyTorch 官方文档
3. 经典模型概述
PyTorch 提供了很多经典的神经网络模型,可以用作基础构建模块。以下是一些经典的深度学习模型,它们广泛应用于图像分类、物体检测、语音识别、自然语言处理等任务。
经典模型:
- LeNet:经典的卷积神经网络 (CNN),主要用于手写数字识别。
- AlexNet:在图像分类任务中非常著名的 CNN,曾在 ImageNet 比赛中获胜。
- VGGNet:更深层的卷积神经网络,特点是使用小卷积核 (3x3) 堆叠。
- ResNet:深度残差网络,通过引入跳跃连接解决了深层网络的梯度消失问题。
- InceptionNet:通过并行卷积核和池化操作增强了特征提取的能力。
- Transformer:广泛应用于自然语言处理的架构,引入了自注意力机制。
4. 基础模型教程
4.1 搭建 LeNet 模型
LeNet 是一个非常简单的卷积神经网络,主要用于手写数字识别任务。
示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F# 定义 LeNet 网络结构
class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(1, 6, 5) # 输入通道为1(灰度图),输出通道为6,卷积核大小为5self.conv2 = nn.Conv2d(6, 16, 5) # 输入通道为6,输出通道为16self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层,输入大小为16*5*5,输出大小为120self.fc2 = nn.Linear(120, 84) # 全连接层,输出为84self.fc3 = nn.Linear(84, 10) # 输出为10(10个类别)def forward(self, x):x = F.max_pool2d(F.relu(self.conv1(x)), 2) # 卷积 + ReLU + 最大池化x = F.max_pool2d(F.relu(self.conv2(x)), 2) # 卷积 + ReLU + 最大池化x = x.view(-1, 16 * 5 * 5) # 展平特征图x = F.relu(self.fc1(x)) # 全连接层 + ReLUx = F.relu(self.fc2(x)) # 全连接层 + ReLUx = self.fc3(x) # 输出层return x# 实例化模型并定义损失函数和优化器
model = LeNet()
criterion = nn.CrossEntropyLoss() # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器,学习率0.001
说明:
LeNet
包含两个卷积层,后接三个全连接层,用于简单的图像分类任务。- 使用
CrossEntropyLoss
作为分类任务的损失函数,Adam 作为优化器。
5. 进阶模型教程
5.1 构建 ResNet 模型
ResNet 是一个深度残差网络,提出了残差块的概念,解决了深层网络的梯度消失问题。你可以使用 torchvision
模块中的预训练 ResNet 模型,或从头开始构建。
示例代码:
import torch
import torchvision.models as models
from torchsummary import summary# 加载预训练的 ResNet-18 模型
model = models.resnet18(pretrained=True)# 打印模型结构
summary(model, input_size=(3, 224, 224))
说明:
torchvision.models
中包含预训练的经典网络模型(如 ResNet、VGG 等),可以直接加载并用于迁移学习任务。summary
函数可以打印模型的结构和参数数量。
5.2 迁移学习:微调预训练模型
利用预训练的 ResNet 模型,冻结前几层权重,并微调最后几层以适应特定任务(如自定义图像分类)。
示例代码:
import torch.nn as nn
import torchvision.models as models# 加载预训练的 ResNet-18 模型
model = models.resnet18(pretrained=True)# 冻结 ResNet 的前几层(特征提取器部分)
for param in model.parameters():param.requires_grad = False# 修改最后的全连接层,使其输出类别为我们需要的数量
num_ftrs = model.fc.in_features # 提取原始全连接层的输入特征数
model.fc = nn.Linear(num_ftrs, 2) # 假设我们只需要2个类别的分类# 现在只会训练最后一层的权重
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss()
说明:
requires_grad=False
冻结网络的前几层参数,使其在训练过程中保持不变;- 通过修改最后一层全连接层,可以适配任意数量的输出类别。
6. 高级教程
6.1 Transformer 模型
Transformer 是一种强大的自注意力机制模型,广泛应用于自然语言处理任务。在 PyTorch 中可以使用 torch.nn.Transformer
来构建模型。
示例代码:
import torch
import torch.nn as nn# 定义 Transformer 模型
model = nn.Transformer(nhead=8, num_encoder_layers=6)# 假设输入大小为 (sequence_length, batch_size, embedding_dim)
src = torch.rand((10, 32, 512)) # 源输入序列
tgt = torch.rand((20, 32, 512)) # 目标输出序列# 前向传播
output = model(src, tgt)
print(output.shape)
说明:
nn.Transformer
定义了一个包含多层编码器和解码器的 Transformer 模型,nhead=8
表示多头注意力机制中的 8 个头。src
和tgt
是输入和输出序列的张量,输入的形状为(sequence_length, batch_size, embedding_dim)
。
6.2 自定义注意力机制
你还可以通过 PyTorch 实现自定义的注意力机制,并将其集成到 Transformer 或其他深度学习模型中。
7. 总结
PyTorch 提供了非常灵活和强大的工具来构建和训练经典深度学习模型。无论是卷积神经网络 (CNN) 还是基于注意力机制的模型,PyTorch 都能轻松实现并支持 GPU 加速。通过预训练模型和迁移学习,开发者可以更快速地应用这些经典模型进行不同的任务。
更多详细信息和教程请查阅 PyTorch 官方文档。
相关文章:
PyTorch经典模型
PyTorch 经典模型教程 1. PyTorch 库架构概述 PyTorch 是一个广泛使用的深度学习框架,具有高度的灵活性和动态计算图的特性。它支持自动求导功能,并且拥有强大的 GPU 加速能力,适用于各种神经网络模型的训练与部署。 PyTorch 的核心架构包…...

C++ STL容器(三) —— 迭代器底层剖析
本篇聚焦于STL中的迭代器,同样基于MSVC源码。 文章目录 迭代器模式应用场景实现方式优缺点 UML类图代码解析list 迭代器const 迭代器非 const 迭代器 vector 迭代器const 迭代器非const迭代器 反向迭代器 迭代器失效参考资料 迭代器模式 首先迭代器模式是设计模式中…...
力扣416周赛
举报垃圾信息 题目 3295. 举报垃圾信息 - 力扣(LeetCode) 思路 直接模拟就好了,这题居然是中等难度 代码 public boolean reportSpam(String[] message, String[] bannedWords) {Map<String,Integer> map new HashMap<>()…...
vue 页面常用图表框架
在 Vue.js 页面中,常见的用于制作图表的框架或库有以下几种: ECharts: 官方网站: EChartsECharts 是一个功能强大、可扩展的图表库,支持多种图表类型,如柱状图、折线图、饼图等。Vue 集成: 可以使用 vue-echarts 插件,…...
spring 注解 - @PostConstruct - 用于初始化工作
PostConstruct 是 Java EE 5 中引入的一个注解,用于标注在方法上,表示该方法应该在依赖注入完成之后执行。这个注解是 javax.annotation 包的一部分,通常用于初始化工作,比如初始化成员变量或者启动一些后台任务。 在 Spring 框架…...

多机器学习模型学习
特征处理 import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit from sklearn.impute import SimpleImputer from sklearn.pipeline import FeatureUnion fr…...
【网页设计】前言
本专栏主要记录 “网页设计” 这一课程的相关笔记。 参考资料: 黑马程序员:黑马程序员pink老师前端入门教程,零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 教材:《Adobe创意大学 Dreamweaver CS6标准教材》《…...

STM32巡回研讨会总结(2024)
前言 本次ST公司可以说是推出了7大方面,几乎可以说是覆盖到了目前生活中的方方面面,下面总结下我的感受。无线类 支持多种调制模式(LoRa、(G)FSK、(G)MSK 和 BPSK)满足工业和消费物联网 (IoT) 中各种低功耗广域网 (LPWAN) 无线应…...

54 螺旋矩阵
解题思路: \qquad 这道题可以直接用模拟解决,顺时针螺旋可以分解为依次沿“右-下-左-上”四个方向的移动,每次碰到“边界”时改变方向,边界是不可到达或已经到达过的地方,会随着指针移动不断收缩。 vector<int>…...
基于STM32与OpenCV的物料搬运机械臂设计流程
一、项目概述 本文提出了一种新型的物流搬运机器人,旨在提高物流行业的物料搬运效率和准确性。该机器人结合了 PID 闭环控制算法与视觉识别技术,能够在复杂的环境中实现自主巡线与物料识别。 项目目标与用途 目标:设计一款能够自动搬运物流…...

[万字长文]stable diffusion代码阅读笔记
stable diffusion代码阅读笔记 获得更好的阅读体验可以转到我的博客y0k1n0的小破站 本文参考的配置文件信息: AutoencoderKL:stable-diffusion\configs\autoencoder\autoencoder_kl_32x32x4.yaml latent-diffusion:stable-diffusion\configs\latent-diffusion\lsun_churches-ld…...
watchEffect工作原理
watchEffect工作原理 自动依赖收集:watchEffect不需要明确指定要观察的响应式数据,它会自动收集回调函数中用到的所有响应式数据作为依赖。即时执行:watchEffect的回调函数会在组件的setup()函数执行时立即执行一次,以便能够立即…...
斐波那契数列
在 Python 3.11 中实现斐波那契数列的常见方式有多种,下面我将展示几种不同的实现方法,包括递归、迭代和使用缓存(动态规划)来优化递归版本。 1. 递归方式(最简单但效率较低) def fibonacci_recursive(n)…...

TCP并发服务器的实现
一请求一线程 问题 当客户端数量较多时,使用单独线程为每个客户端处理请求可能导致系统资源的消耗过大和性能瓶颈。 资源消耗: 线程创建和管理开销:每个线程都有其创建和销毁的开销,特别是在高并发环境中,这种开销…...
前端大屏自适应方案
一般后台管理页面,需要自适应的也就是大屏这一个,其他的尺寸我感觉用第三方框架继承好的就挺合适的,当然自适应方案也可以同步到所有页面,但我感觉除了 to c 的项目,不太需要所有页面自适应,毕竟都是查看和…...
16.3 k8s容器cpu内存告警指标与资源request和limit
本节重点介绍 : Guaranteed的pod Qos最高在生产环境中,如何设置 Kubernetes 的 Limit 和 Request 对于优化应用程序和集群性能至关重要。对于 CPU,如果 pod 中服务使用 CPU 超过设置的limits,pod 不会被 kill 掉但会被限制。如果没有设置 li…...
【计算机网络 - 基础问题】每日 3 题(二十)
✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏&…...
铰链损失函数
铰链损失函数(Hinge Loss)主要用于支持向量机(SVM)中,旨在最大化分类间隔。它的公式为: L ( y , f ( x ) ) max ( 0 , 1 − y ⋅ f ( x ) ) L(y, f(x)) \max(0, 1 - y \cdot f(x)) L(y,f(x))max(0,1−…...

项目实战bug修复
实操bug修复记录 左侧侧边栏切换,再次切换侧边栏,右侧未从顶部初始位置展示。地图定位展示,可跳转到设置的对应位置。一个页面多个el-dialog弹出框导致渲染层级出现问题。锚点滚动定位错位问题。动态类名绑定。el-tree树形通过 draggable 属性…...

Git常用指令整理【新手入门级】【by慕羽】
Git 是一个分布式版本控制系统,主要用于跟踪和管理源代码的更改。它允许多名开发者协作,同时提供了强大的功能来管理项目的历史记录和不同版本。本文主要记录和整理,个人理解的Git相关的一些指令和用法 文章目录 一、git安装 & 创建git仓…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...