当前位置: 首页 > news >正文

一步一步优化一套生成式语言模型系统

以下是这套生成式语言模型解决任务的流程图概述:

查询意图
计算意图
生成内容意图
用户输入
上下文相关性理解
意图识别
查询目标知识库
解析计算公式
确定生成内容类型
生成查询命令
计算结果
生成内容
结果汇总
生成最终响应
用户反馈
优化意图识别与处理流程

流程图说明:

  1. 用户输入:用户输入请求。
  2. 上下文相关性理解:分析输入的上下文。
  3. 意图识别:识别用户意图,分为查询、计算和生成内容。
  4. 查询意图:访问目标知识库并生成查询命令。
  5. 计算意图:解析公式并计算结果。
  6. 生成内容意图:确定生成内容类型并执行生成。
  7. 结果汇总:整合查询结果、计算结果和生成内容。
  8. 生成最终响应:将汇总的信息呈现给用户。
  9. 用户反馈:收集用户反馈以优化系统。

我想优化这个实现过程

好的,以下是调整后的流程图,以更清晰地展示生成查询命令的过程:

查询意图
计算意图
生成内容意图
用户输入
上下文相关性理解
意图识别
识别目标数据库
分析数据库结构
生成查找指令
执行查询
反馈查询结果
解析计算公式
计算结果
确定生成内容类型
生成内容
结果汇总
生成最终响应
用户反馈
优化意图识别与处理流程

流程图说明:

  1. 用户输入:用户提交查询请求。
  2. 上下文相关性理解:分析输入的上下文信息。
  3. 意图识别:识别用户意图,分为查询、计算和生成内容。
  4. 查询意图
    • 识别目标数据库:根据用户输入确定相关的数据库。
    • 分析数据库结构:理解数据库的结构和内容。
    • 生成查找指令:根据输入和数据库结构生成查询指令(如SQL语句)。
    • 执行查询:在数据库中执行查询。
    • 反馈查询结果:返回查询结果给用户。
  5. 计算意图:解析用户输入的计算公式并返回计算结果。
  6. 生成内容意图:确定生成内容类型并生成相应内容。
  7. 结果汇总:整合查询结果、计算结果和生成内容。
  8. 生成最终响应:将整合的信息呈现给用户。
  9. 用户反馈:收集用户反馈以不断优化系统。

我依旧感觉这个设计还是有一些问题。

查询意图 分为两个 一个是数据库查询 一个是接口查询
明白了,这里是根据你的要求调整后的流程图,将查询意图分为数据库查询和接口查询:

查询意图
数据库查询
接口查询
计算意图
生成内容意图
用户输入
上下文相关性理解
意图识别
选择查询类型
识别目标数据库
分析数据库结构
生成查找指令
执行数据库查询
反馈数据库查询结果
识别目标接口
生成接口调用指令
执行接口查询
反馈接口查询结果
解析计算公式
计算结果
确定生成内容类型
生成内容
结果汇总
生成最终响应
用户反馈
优化意图识别与处理流程

流程图说明:

  1. 用户输入:用户提交请求。
  2. 上下文相关性理解:分析输入的上下文信息。
  3. 意图识别:识别用户意图,分为查询、计算和生成内容。
  4. 查询意图
    • 选择查询类型:判断是数据库查询还是接口查询。
    • 数据库查询
      • 识别目标数据库、分析结构、生成查找指令、执行查询并反馈结果。
    • 接口查询
      • 识别目标接口、生成接口调用指令、执行查询并反馈结果。
  5. 计算意图:解析计算公式并返回结果。
  6. 生成内容意图:确定内容类型并生成相应内容。
  7. 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
  8. 生成最终响应:将整合的信息呈现给用户。
  9. 用户反馈:收集反馈以优化系统。

更详细的丰富好的,这里是更加详细和丰富的流程图,加入了更多的环节和步骤:

查询意图
数据库查询
结果有效
结果无效
接口查询
结果有效
结果无效
计算意图
结果有效
结果无效
生成内容意图
内容有效
内容无效
用户输入
上下文相关性理解
意图识别
选择查询类型
识别目标数据库
分析数据库结构
生成查找指令
执行数据库查询
反馈数据库查询结果
数据库结果验证
处理查询结果
返回错误信息
识别目标接口
生成接口调用指令
执行接口查询
反馈接口查询结果
接口结果验证
处理接口结果
返回错误信息
解析计算公式
执行计算
返回计算结果
计算结果验证
处理计算结果
返回错误信息
确定生成内容类型
生成内容模板
调用生成接口
获取生成内容
生成内容验证
处理生成内容
返回错误信息
结果汇总
生成最终响应
用户反馈收集
反馈分析
优化意图识别与处理流程
更新知识库和模型

流程图说明:

  1. 用户输入:用户提交请求。
  2. 上下文相关性理解:分析输入的上下文信息。
  3. 意图识别:识别用户意图,分为查询、计算和生成内容。
  4. 查询意图
    • 选择查询类型:判断是数据库查询还是接口查询。
    • 数据库查询
      • 识别目标数据库。
      • 分析数据库结构。
      • 生成查找指令。
      • 执行数据库查询。
      • 反馈数据库查询结果。
      • 数据库结果验证:检查结果的有效性。
        • 有效则处理查询结果。
        • 无效则返回错误信息。
    • 接口查询
      • 识别目标接口。
      • 生成接口调用指令。
      • 执行接口查询。
      • 反馈接口查询结果。
      • 接口结果验证:检查结果的有效性。
        • 有效则处理接口结果。
        • 无效则返回错误信息。
  5. 计算意图
    • 解析计算公式。
    • 执行计算。
    • 返回计算结果。
    • 计算结果验证:检查结果的有效性。
      • 有效则处理计算结果。
      • 无效则返回错误信息。
  6. 生成内容意图
    • 确定生成内容类型。
    • 生成内容模板。
    • 调用生成接口。
    • 获取生成内容。
    • 生成内容验证:检查内容的有效性。
      • 有效则处理生成内容。
      • 无效则返回错误信息。
  7. 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
  8. 生成最终响应:将整合的信息呈现给用户。
  9. 用户反馈收集:收集用户反馈以分析和优化系统。
  10. 反馈分析:分析用户反馈信息。
  11. 优化意图识别与处理流程:基于反馈进行系统优化。
  12. 更新知识库和模型:根据新信息更新系统。

这个过程中存在一些环节没有达到闭环。
好的,这里是经过调整后的流程图,确保在结果无效时能够回滚到生成指令的步骤重新生成指令:

查询意图
数据库查询
结果有效
结果无效
接口查询
结果有效
结果无效
计算意图
结果有效
结果无效
生成内容意图
内容有效
内容无效
用户输入
上下文相关性理解
意图识别
选择查询类型
识别目标数据库
分析数据库结构
生成查找指令
执行数据库查询
反馈数据库查询结果
数据库结果验证
处理查询结果
识别目标接口
生成接口调用指令
执行接口查询
反馈接口查询结果
接口结果验证
处理接口结果
解析计算公式
执行计算
返回计算结果
计算结果验证
处理计算结果
确定生成内容类型
生成内容模板
调用生成接口
获取生成内容
生成内容验证
处理生成内容
结果汇总
生成最终响应
用户反馈收集
反馈分析
优化意图识别与处理流程
更新知识库和模型

流程图说明:

  1. 用户输入:用户提交请求。
  2. 上下文相关性理解:分析输入的上下文信息。
  3. 意图识别:识别用户意图,分为查询、计算和生成内容。
  4. 查询意图
    • 选择查询类型:判断是数据库查询还是接口查询。
    • 数据库查询
      • 识别目标数据库。
      • 分析数据库结构。
      • 生成查找指令。
      • 执行数据库查询。
      • 反馈数据库查询结果。
      • 数据库结果验证:检查结果的有效性。
        • 有效则处理查询结果。
        • 无效则回滚到生成指令步骤重新生成查找指令。
    • 接口查询
      • 识别目标接口。
      • 生成接口调用指令。
      • 执行接口查询。
      • 反馈接口查询结果。
      • 接口结果验证:检查结果的有效性。
        • 有效则处理接口结果。
        • 无效则回滚到生成指令步骤重新生成接口调用指令。
  5. 计算意图
    • 解析计算公式。
    • 执行计算。
    • 返回计算结果。
    • 计算结果验证:检查结果的有效性。
      • 有效则处理计算结果。
      • 无效则回滚到解析计算公式步骤重新解析。
  6. 生成内容意图
    • 确定生成内容类型。
    • 生成内容模板。
    • 调用生成接口。
    • 获取生成内容。
    • 生成内容验证:检查内容的有效性。
      • 有效则处理生成内容。
      • 无效则回滚到生成模板步骤重新生成内容模板。
  7. 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
  8. 生成最终响应:将整合的信息呈现给用户。
  9. 用户反馈收集:收集用户反馈以分析和优化系统。
  10. 反馈分析:分析用户反馈信息。
  11. 优化意图识别与处理流程:基于反馈进行系统优化。
  12. 更新知识库和模型:根据新信息更新系统。

好的,以下是根据你要求调整后的流程图,进一步细化自然语言处理任务库,包含不同的常见任务及其few-shot能力增强效果:

graph TD;A[用户输入] --> B[上下文相关性理解]B --> C[意图识别]C -->|查询意图| D{选择查询类型}D -->|数据库查询| E[识别目标数据库]E --> F[分析数据库结构]F --> G[生成查找指令]G --> H[执行数据库查询]H --> I[反馈数据库查询结果]I --> J[数据库结果验证]J -->|结果有效| K[处理查询结果]J -->|结果无效| G  %% 回滚到生成指令步骤D -->|接口查询| L[识别目标接口]L --> M[生成接口调用指令]M --> N[执行接口查询]N --> O[反馈接口查询结果]O --> P[接口结果验证]P -->|结果有效| Q[处理接口结果]P -->|结果无效| M  %% 回滚到生成指令步骤C -->|计算意图| R[解析计算公式]R --> S[执行计算]S --> T[返回计算结果]T --> U[计算结果验证]U -->|结果有效| V[处理计算结果]U -->|结果无效| R  %% 回滚到解析计算步骤C -->|生成内容意图| W[确定生成内容类型]W --> X[指令选择]X --> Y{选择指令类型}Y -->|基于RAG增强的指令| Z[生成RAG指令]Y -->|基于知识图谱增强的指令| AA[生成知识图谱指令]Y -->|基于自然语言处理任务库增强的指令| AB[指令选择:NLP任务]AB --> AC{选择NLP任务}AC -->|文本分类| AD[生成文本分类指令]AC -->|情绪识别| AE[生成情绪识别指令]AC -->|实体识别| AF[生成实体识别指令]AC -->|关系抽取| AG[生成关系抽取指令]AC -->|事件抽取| AH[生成事件抽取指令]AC -->|翻译| AI[生成翻译指令]AD --> AJ[调用文本分类接口]AE --> AK[调用情绪识别接口]AF --> AL[调用实体识别接口]AG --> AM[调用关系抽取接口]AH --> AN[调用事件抽取接口]AI --> AO[调用翻译接口]AJ --> AP[获取生成内容]AK --> APAL --> APAM --> APAN --> APAO --> APAP --> AQ[生成内容验证]AQ -->|内容有效| AR[处理生成内容]AQ -->|内容无效| X  %% 回滚到指令选择步骤K --> AS[结果汇总]Q --> ASV --> ASAR --> ASAS --> AT[生成最终响应]AT --> AU[用户反馈收集]AU --> AV[反馈分析]AV --> AW[优化意图识别与处理流程]AW --> AX[更新知识库和模型]

流程图说明:

  1. 用户输入:用户提交请求。
  2. 上下文相关性理解:分析输入的上下文信息。
  3. 意图识别:识别用户意图,分为查询、计算和生成内容。
  4. 查询意图
    • 选择查询类型:判断是数据库查询还是接口查询。
    • 数据库查询:识别目标数据库、分析结构、生成查找指令、执行查询并反馈结果,验证结果有效性。
    • 接口查询:识别目标接口、生成接口调用指令、执行查询并反馈结果,验证结果有效性。
  5. 计算意图:解析计算公式、执行计算并返回结果,验证结果有效性。
  6. 生成内容意图
    • 确定生成内容类型。
    • 指令选择:选择增强的生成指令类型。
      • 基于RAG增强的指令。
      • 基于知识图谱增强的指令。
      • 基于自然语言处理任务库增强的指令,包含多种任务。
    • 选择具体的NLP任务(如文本分类、情绪识别、实体识别等),生成相应的指令并调用接口。
    • 生成内容验证:检查内容的有效性。
  7. 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
  8. 生成最终响应:将整合的信息呈现给用户。
  9. 用户反馈收集:收集用户反馈以分析和优化系统。
  10. 反馈分析:分析用户反馈信息。
  11. 优化意图识别与处理流程:基于反馈进行系统优化。
  12. 更新知识库和模型:根据新信息更新系统。

这种设计能够更全面地展示自然语言处理任务库的应用和增强效果,提升整体系统的灵活性和响应能力。

相关文章:

一步一步优化一套生成式语言模型系统

以下是这套生成式语言模型解决任务的流程图概述: #mermaid-svg-keXg8yGoCyObKDtu {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-keXg8yGoCyObKDtu .error-icon{fill:#552222;}#mermaid-svg-keXg8yGoCyO…...

Q必达任务脚本

文章目录 1.购买服务器地址2.部署教程3. 代码如下4. 如何联系我 1.购买服务器地址 服务器购买地址 https://t.aliyun.com/U/rUHk58 若失效,可用地址 https://www.aliyun.com/activity/wuying/dj?source5176.29345612&userCode49hts92d 2.部署教程 2024年最…...

问请问请问2312123213123

📢博客主页:https://blog.csdn.net/2301_779549673 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📢本文由 JohnKi 原创,首发于 CSDN🙉 📢未来很长&#…...

Vue3:快速生成模板代码

目录 一.模板代码 1.提供基础结构 2.定义组件名称 3.初始化数据和方法 4.应用样式 5.提高开发效率 二.操作 1.点击右下角设置按钮选择代码片段 2.输入vue.json,打开vue.json文件 3.构造模板 4.模板代码 5.使用 6.效果 一.模板代码 Vue3快速生成模板代…...

文件上传-php

查找方式 ***(1) 黑盒 查找(upload) 扫描 (2) 应用型 窗口 上传中心或者后台中心 上传 Ps:后台是后台 权限是权限 (3) 会员中心 (4) 白盒 基本函数定义 写前端的 Enctype 上传类型Method 提交方式Onsubmit 鼠标的时间Action"放在指定文件"Php 接受表单数据 isset(…...

C++设计模式(更新中)

文章目录 1、创建型模式1.1 简单工厂(Simple Factory)(1)示例(2)总结 1.2 工厂方法(Factory Method)(1)示例(2)总结 1.3 抽象工厂&…...

Kali crunsh字典工具

查看自带密码字典 vim /usr/share/wordlists 使用 crunch 字典工具 随机组成6位纯数字密码 crunch 6 6 0123456789 -o test1.txt 由 Abc1234 随机组成的 6~8 位密码 crunch 6 8 Abc1234 -o test2.txt 以A开头后面跟3位数字组成的4位密码 crunch 4 4 -t A%%% -o test3.txt...

Redis系列---Redission分布式锁

文章目录 类型原理使用看门狗与setNx比较 类型 使用Redission,lock的机制其实是使用了ttl,一直等ttl为0再get。无论是redission还是redis的setNx,只要是锁,都必须有加锁和释放锁两个动作,二者缺一不可,并且…...

算法打卡:第十一章 图论part05

今日收获:并查集理论基础,寻找存在的路径 1. 并查集理论基础(from代码随想录) (1)应用场景:判断两个元素是否在同一个集合中 (2)原理讲解:通过一个一维数组…...

3.《DevOps》系列K8S部署CICD流水线之部署MetalLB负载均衡器和Helm部署Ingress-Nginx

架构 服务器IP服务名称硬件配置192.168.1.100k8s-master8核、16G、120G192.168.1.101k8s-node18核、16G、120G192.168.1.102k8s-node28核、16G、120G192.168.1.103nfs2核、4G、500G操作系统:Rocky9.3 后续通过K8S部署GitLab、Harbor、Jenkins 为什么使用MetalLB 当使用云平…...

MySQL:表的约束

目录 1 空属性 2 默认值 3 列描述 4 zerofill 5 主键 6 自增长 7 唯一键 8 外键 真正约束字段的是数据类型,但是数据类型约束很单一,需要有一些额外的约束,更好的保证数据的合法性,从业务逻辑角度保证数据的正确性。比如有…...

38.重复的子字符串

方法1: class Solution {public boolean repeatedSubstringPattern(String s) {if (s.equals("")) return false;String s2(ss).substring(1,(ss).length()-1);//去掉首尾字符return s2.contains(s);//判断是否包含s} } class Solution(object):def rep…...

Linux服务部署指南

在现代的IT基础设施中,Linux操作系统因其稳定性、安全性和灵活性而广泛用于服务部署。本文将提供一个全面的指南,介绍如何在Linux环境下部署服务,包括准备工作、部署流程、以及监控和维护。 1. 准备工作 在开始部署服务之前,确保…...

Unity中,如果你想让多个数字人轮流显示和隐藏

在Unity中,如果你想让多个数字人轮流显示和隐藏,可以通过控制它们的GameObject的激活状态 (SetActive()) 来实现。你可以创建一个简单的脚本来控制这些数字人的显示和隐藏,使用协程或者定时器来处理轮流的效果。 下面是一个基本的实现思路&a…...

【LeetCode】动态规划—删除并获得点数(附完整Python/C++代码)

动态规划—#740. 删除并获得点数 前言题目描述基本思路1. 问题定义:2. 理解问题和递推关系:3. 解决方法:4. 进一步优化:5. 小总结: 代码实现Python3代码实现Python 代码解释C代码实现C 代码解释 总结: 前言 给你一个整数数组 n u m s nums nums ,你可以对它进行一…...

利用 PostgreSQL 构建 RAG 系统实现智能问答

在现代信息检索和自然语言处理的场景中,检索增强生成 (Retrieval-Augmented Generation, RAG) 系统因其结合了知识库检索和生成模型的优势,成为了一种非常流行的智能问答方法。在这篇博文中,我将展示如何利用PostgreSQL作为向量存储数据库&am…...

Go 并发模式:扩展与聚合的高效并行

当你搭建好一个管道系统后,数据在各个阶段之间顺畅地流动,并根据你设定的操作逐步转换。这一切看起来像是一条美丽的溪流,然而,为什么有时候这个过程会如此缓慢呢? 在处理数据时,某些阶段可能会非常耗时,导致上游的阶段被阻塞,无法继续处理数据。这不仅影响了管道的整…...

【Transformers基础入门篇2】基础组件之Pipeline

文章目录 一、什么是Pipeline二、查看PipeLine支持的任务类型三、Pipeline的创建和使用3.1 根据任务类型,直接创建Pipeline,默认是英文模型3.2 指定任务类型,再指定模型,创建基于指定模型的Pipeline3.3 预先加载模型,再…...

java反射学习总结

最近在项目上有一个内部的CR,运用到了反射。想起之前面试的时候被面试官追问有没有在项目中用过反射,以及反射的原理和对反射的了解。 于是借此机会,学习回顾一下反射,以及在项目中可能会用到的场景。 Java 中的反射概述 反射&…...

探索C语言与Linux编程:获取当前用户ID与进程ID

探索C语言与Linux编程:获取当前用户ID与进程ID 一、Linux系统概述与用户、进程概念二、C语言与系统调用三、获取当前用户ID四、获取当前进程ID五、综合应用:同时获取用户ID和进程ID六、深入理解与扩展七、结语在操作系统与编程语言的交汇点,Linux作为开源操作系统的典范,为…...

1.4 边界值分析法

欢迎大家订阅【软件测试】 专栏,开启你的软件测试学习之旅! 文章目录 前言1 定义2 选取3 具体步骤4 案例分析 本篇文章参考黑马程序员 前言 边界值分析法是一种广泛应用于软件测试中的技术,旨在识别输入值范围内的潜在缺陷。本文将详细探讨…...

Spring IOC容器Bean对象管理-注解方式

目录 1、Bean对象常用注解介绍 2、注解示例说明 1、Bean对象常用注解介绍 Component 通用类组件注解,该类被注解,IOC容器启动时实例化此类对象Controller 注解控制器类Service 注解业务逻辑类Respository 注解和数据库操作的类,如DAO类Reso…...

OpenAI API: How to catch all 5xx errors in Python?

题意:OpenAI API:如何在 Python 中捕获所有 5xx 错误? 问题背景: I want to catch all 5xx errors (e.g., 500) that OpenAI API sends so that I can retry before giving up and reporting an exception. 我想捕获 OpenAI API…...

C++初阶学习——探索STL奥秘——标准库中的priority_queue与模拟实现

1.priority_queque的介绍 1.priority_queue中文叫优先级队列。优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。 2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元…...

PyTorch经典模型

PyTorch 经典模型教程 1. PyTorch 库架构概述 PyTorch 是一个广泛使用的深度学习框架,具有高度的灵活性和动态计算图的特性。它支持自动求导功能,并且拥有强大的 GPU 加速能力,适用于各种神经网络模型的训练与部署。 PyTorch 的核心架构包…...

C++ STL容器(三) —— 迭代器底层剖析

本篇聚焦于STL中的迭代器,同样基于MSVC源码。 文章目录 迭代器模式应用场景实现方式优缺点 UML类图代码解析list 迭代器const 迭代器非 const 迭代器 vector 迭代器const 迭代器非const迭代器 反向迭代器 迭代器失效参考资料 迭代器模式 首先迭代器模式是设计模式中…...

力扣416周赛

举报垃圾信息 题目 3295. 举报垃圾信息 - 力扣&#xff08;LeetCode&#xff09; 思路 直接模拟就好了&#xff0c;这题居然是中等难度 代码 public boolean reportSpam(String[] message, String[] bannedWords) {Map<String,Integer> map new HashMap<>()…...

vue 页面常用图表框架

在 Vue.js 页面中&#xff0c;常见的用于制作图表的框架或库有以下几种&#xff1a; ECharts: 官方网站: EChartsECharts 是一个功能强大、可扩展的图表库&#xff0c;支持多种图表类型&#xff0c;如柱状图、折线图、饼图等。Vue 集成: 可以使用 vue-echarts 插件&#xff0c;…...

spring 注解 - @PostConstruct - 用于初始化工作

PostConstruct 是 Java EE 5 中引入的一个注解&#xff0c;用于标注在方法上&#xff0c;表示该方法应该在依赖注入完成之后执行。这个注解是 javax.annotation 包的一部分&#xff0c;通常用于初始化工作&#xff0c;比如初始化成员变量或者启动一些后台任务。 在 Spring 框架…...

多机器学习模型学习

特征处理 import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit from sklearn.impute import SimpleImputer from sklearn.pipeline import FeatureUnion fr…...