【Transformers基础入门篇2】基础组件之Pipeline
文章目录
- 一、什么是Pipeline
- 二、查看PipeLine支持的任务类型
- 三、Pipeline的创建和使用
- 3.1 根据任务类型,直接创建Pipeline,默认是英文模型
- 3.2 指定任务类型,再指定模型,创建基于指定模型的Pipeline
- 3.3 预先加载模型,再创建Pipeline
- 3.4 使用Gpu进行推理
- 3.5 查看Device
- 3.6 测试一下耗时
- 3.7 确定的Pipeline的参数
- 四、Pipeline的背后实现
本文为 https://space.bilibili.com/21060026/channel/collectiondetail?sid=1357748的视频学习笔记
项目地址为:https://github.com/zyds/transformers-code
一、什么是Pipeline
- 将数据预处理、模型调用、结果后处理三部分组装成的流水线,如下流程图
- 使我们能够直接输入文本便获得最终的答案,不需要我们关注细节
二、查看PipeLine支持的任务类型
from transformers.pipelines import SUPPORTED_TASKS
from pprint import pprint
for k, v in SUPPORTED_TASKS.items():print(k, v)
输出但其概念PipeLine支持的任务类型以及可以调用的
举例输出:
audio-classification {'impl': <class 'transformers.pipelines.audio_classification.AudioClassificationPipeline'>, 'tf': (), 'pt': (<class 'transformers.models.auto.modeling_auto.AutoModelForAudioClassification'>,), 'default': {'model': {'pt': ('superb/wav2vec2-base-superb-ks', '372e048')}}, 'type': 'audio'}
- key: 任务的名称,如音频分类
- v:关于任务的实现,如具体哪个Pipeline,有没有TF模型,有没有pytorch模型, 模型具体是哪一个

三、Pipeline的创建和使用
3.1 根据任务类型,直接创建Pipeline,默认是英文模型
from transformers import pipeline
pipe = pipeline("text-classification") # 根据pipeline直接创建一个任务类
pipe("very good") # 测试一个句子,输出结果
3.2 指定任务类型,再指定模型,创建基于指定模型的Pipeline
注,这里我已经将模型离线下载到本地了
# https://huggingface.co/models
pipe = pipeline("text-classification", model="./models/roberta-base-finetuned-dianping-chinese")
3.3 预先加载模型,再创建Pipeline
rom transformers import AutoModelForSequenceClassification, AutoTokenizer# 这种方式,必须同时指定model和tokenizer
model = AutoModelForSequenceClassification.from_pretrained("./models_roberta-base-finetuned-dianping-chinese")
tokenizer = AutoTokenizer.from_pretrained("./models_roberta-base-finetuned-dianping-chinese")
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
3.4 使用Gpu进行推理
pipe = pipeline("text-classification", model="./models_roberta-base-finetuned-dianping-chinese", device=0)
3.5 查看Device
pipe.model.device
3.6 测试一下耗时
import torch
import time
times = []
for i in range(100):torch.cuda.synchronize()start = time.time()pipe("我觉得不太行!")torch.cuda.synchronize()end = time.time()times.append(end - start)
print(sum(times) / 100)
3.7 确定的Pipeline的参数
# 先创建一个pipeline
qa_pipe = pipeline("question-answering", model="../../models/models")
qa_pipe
输出

QuestionAnsweringPipeline

查看定义,会告诉我们这个pipeline该如何使用
class QuestionAnsweringPipeline(ChunkPipeline):"""Question Answering pipeline using any `ModelForQuestionAnswering`. See the [question answeringexamples](../task_summary#question-answering) for more information.Example:```python>>> from transformers import pipeline>>> oracle = pipeline(model="deepset/roberta-base-squad2")>>> oracle(question="Where do I live?", context="My name is Wolfgang and I live in Berlin"){'score': 0.9191, 'start': 34, 'end': 40, 'answer': 'Berlin'}```Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)This question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier:`"question-answering"`.The models that this pipeline can use are models that have been fine-tuned on a question answering task. See theup-to-date list of available models on[huggingface.co/models](https://huggingface.co/models?filter=question-answering)."""
进入pipeline,看__call__,查看可以支持的更多的参数
列出了更多的参数
def __call__(self, *args, **kwargs):"""Answer the question(s) given as inputs by using the context(s).Args:args ([`SquadExample`] or a list of [`SquadExample`]):One or several [`SquadExample`] containing the question and context.X ([`SquadExample`] or a list of [`SquadExample`], *optional*):One or several [`SquadExample`] containing the question and context (will be treated the same way as ifpassed as the first positional argument).data ([`SquadExample`] or a list of [`SquadExample`], *optional*):One or several [`SquadExample`] containing the question and context (will be treated the same way as ifpassed as the first positional argument).question (`str` or `List[str]`):One or several question(s) (must be used in conjunction with the `context` argument).context (`str` or `List[str]`):One or several context(s) associated with the question(s) (must be used in conjunction with the`question` argument).topk (`int`, *optional*, defaults to 1):The number of answers to return (will be chosen by order of likelihood). Note that we return less thantopk answers if there are not enough options available within the context.doc_stride (`int`, *optional*, defaults to 128):If the context is too long to fit with the question for the model, it will be split in several chunkswith some overlap. This argument controls the size of that overlap.max_answer_len (`int`, *optional*, defaults to 15):The maximum length of predicted answers (e.g., only answers with a shorter length are considered).max_seq_len (`int`, *optional*, defaults to 384):The maximum length of the total sentence (context + question) in tokens of each chunk passed to themodel. The context will be split in several chunks (using `doc_stride` as overlap) if needed.max_question_len (`int`, *optional*, defaults to 64):The maximum length of the question after tokenization. It will be truncated if needed.handle_impossible_answer (`bool`, *optional*, defaults to `False`):Whether or not we accept impossible as an answer.align_to_words (`bool`, *optional*, defaults to `True`):Attempts to align the answer to real words. Improves quality on space separated langages. Might hurt onnon-space-separated languages (like Japanese or Chinese)Return:A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys:- **score** (`float`) -- The probability associated to the answer.- **start** (`int`) -- The character start index of the answer (in the tokenized version of the input).- **end** (`int`) -- The character end index of the answer (in the tokenized version of the input).- **answer** (`str`) -- The answer to the question."""
如下面的例子
我们输出问题:中国的首都是哪里? 给的上下文是:中国的首都是北京
qa_pipe(question="中国的首都是哪里?", context="中国的首都是北京")

如果通过 max_answer_len参数来限定输出的最大长度,会进行强行截断
qa_pipe(question="中国的首都是哪里?", context="中国的首都是北京", max_answer_len=1)

四、Pipeline的背后实现
- step1 初始化组件,Tokenizer,model
# step1 初始化tokenizer, model
tokenizer = AutoTokenizer.from_pretrained("../../models/models_roberta-base-finetuned-dianping-chinese")
model = AutoModelForSequenceClassification.from_pretrained("../../models/models_roberta-base-finetuned-dianping-chinese")
- step2 预处理
# 预处理,返回pytorch的tensor,是一个dict
input_text = "我觉得不太行!"
inputs = tokenizer(input_text, return_tensors="pt")
inputs

- step3 模型预测
res = model(**inputs)
res

预测的结果,包括的内容有点多,如loss,logits等
- step4 结果后处理
logits = res.logits
logits = torch.softmax(logits, dim=-1)
pred = torch.argmax(logits).item()
result = model.config.id2label.get(pred)
result

相关文章:
【Transformers基础入门篇2】基础组件之Pipeline
文章目录 一、什么是Pipeline二、查看PipeLine支持的任务类型三、Pipeline的创建和使用3.1 根据任务类型,直接创建Pipeline,默认是英文模型3.2 指定任务类型,再指定模型,创建基于指定模型的Pipeline3.3 预先加载模型,再…...
java反射学习总结
最近在项目上有一个内部的CR,运用到了反射。想起之前面试的时候被面试官追问有没有在项目中用过反射,以及反射的原理和对反射的了解。 于是借此机会,学习回顾一下反射,以及在项目中可能会用到的场景。 Java 中的反射概述 反射&…...
探索C语言与Linux编程:获取当前用户ID与进程ID
探索C语言与Linux编程:获取当前用户ID与进程ID 一、Linux系统概述与用户、进程概念二、C语言与系统调用三、获取当前用户ID四、获取当前进程ID五、综合应用:同时获取用户ID和进程ID六、深入理解与扩展七、结语在操作系统与编程语言的交汇点,Linux作为开源操作系统的典范,为…...
1.4 边界值分析法
欢迎大家订阅【软件测试】 专栏,开启你的软件测试学习之旅! 文章目录 前言1 定义2 选取3 具体步骤4 案例分析 本篇文章参考黑马程序员 前言 边界值分析法是一种广泛应用于软件测试中的技术,旨在识别输入值范围内的潜在缺陷。本文将详细探讨…...
Spring IOC容器Bean对象管理-注解方式
目录 1、Bean对象常用注解介绍 2、注解示例说明 1、Bean对象常用注解介绍 Component 通用类组件注解,该类被注解,IOC容器启动时实例化此类对象Controller 注解控制器类Service 注解业务逻辑类Respository 注解和数据库操作的类,如DAO类Reso…...
OpenAI API: How to catch all 5xx errors in Python?
题意:OpenAI API:如何在 Python 中捕获所有 5xx 错误? 问题背景: I want to catch all 5xx errors (e.g., 500) that OpenAI API sends so that I can retry before giving up and reporting an exception. 我想捕获 OpenAI API…...
C++初阶学习——探索STL奥秘——标准库中的priority_queue与模拟实现
1.priority_queque的介绍 1.priority_queue中文叫优先级队列。优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。 2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元…...
PyTorch经典模型
PyTorch 经典模型教程 1. PyTorch 库架构概述 PyTorch 是一个广泛使用的深度学习框架,具有高度的灵活性和动态计算图的特性。它支持自动求导功能,并且拥有强大的 GPU 加速能力,适用于各种神经网络模型的训练与部署。 PyTorch 的核心架构包…...
C++ STL容器(三) —— 迭代器底层剖析
本篇聚焦于STL中的迭代器,同样基于MSVC源码。 文章目录 迭代器模式应用场景实现方式优缺点 UML类图代码解析list 迭代器const 迭代器非 const 迭代器 vector 迭代器const 迭代器非const迭代器 反向迭代器 迭代器失效参考资料 迭代器模式 首先迭代器模式是设计模式中…...
力扣416周赛
举报垃圾信息 题目 3295. 举报垃圾信息 - 力扣(LeetCode) 思路 直接模拟就好了,这题居然是中等难度 代码 public boolean reportSpam(String[] message, String[] bannedWords) {Map<String,Integer> map new HashMap<>()…...
vue 页面常用图表框架
在 Vue.js 页面中,常见的用于制作图表的框架或库有以下几种: ECharts: 官方网站: EChartsECharts 是一个功能强大、可扩展的图表库,支持多种图表类型,如柱状图、折线图、饼图等。Vue 集成: 可以使用 vue-echarts 插件,…...
spring 注解 - @PostConstruct - 用于初始化工作
PostConstruct 是 Java EE 5 中引入的一个注解,用于标注在方法上,表示该方法应该在依赖注入完成之后执行。这个注解是 javax.annotation 包的一部分,通常用于初始化工作,比如初始化成员变量或者启动一些后台任务。 在 Spring 框架…...
多机器学习模型学习
特征处理 import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit from sklearn.impute import SimpleImputer from sklearn.pipeline import FeatureUnion fr…...
【网页设计】前言
本专栏主要记录 “网页设计” 这一课程的相关笔记。 参考资料: 黑马程序员:黑马程序员pink老师前端入门教程,零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 教材:《Adobe创意大学 Dreamweaver CS6标准教材》《…...
STM32巡回研讨会总结(2024)
前言 本次ST公司可以说是推出了7大方面,几乎可以说是覆盖到了目前生活中的方方面面,下面总结下我的感受。无线类 支持多种调制模式(LoRa、(G)FSK、(G)MSK 和 BPSK)满足工业和消费物联网 (IoT) 中各种低功耗广域网 (LPWAN) 无线应…...
54 螺旋矩阵
解题思路: \qquad 这道题可以直接用模拟解决,顺时针螺旋可以分解为依次沿“右-下-左-上”四个方向的移动,每次碰到“边界”时改变方向,边界是不可到达或已经到达过的地方,会随着指针移动不断收缩。 vector<int>…...
基于STM32与OpenCV的物料搬运机械臂设计流程
一、项目概述 本文提出了一种新型的物流搬运机器人,旨在提高物流行业的物料搬运效率和准确性。该机器人结合了 PID 闭环控制算法与视觉识别技术,能够在复杂的环境中实现自主巡线与物料识别。 项目目标与用途 目标:设计一款能够自动搬运物流…...
[万字长文]stable diffusion代码阅读笔记
stable diffusion代码阅读笔记 获得更好的阅读体验可以转到我的博客y0k1n0的小破站 本文参考的配置文件信息: AutoencoderKL:stable-diffusion\configs\autoencoder\autoencoder_kl_32x32x4.yaml latent-diffusion:stable-diffusion\configs\latent-diffusion\lsun_churches-ld…...
watchEffect工作原理
watchEffect工作原理 自动依赖收集:watchEffect不需要明确指定要观察的响应式数据,它会自动收集回调函数中用到的所有响应式数据作为依赖。即时执行:watchEffect的回调函数会在组件的setup()函数执行时立即执行一次,以便能够立即…...
斐波那契数列
在 Python 3.11 中实现斐波那契数列的常见方式有多种,下面我将展示几种不同的实现方法,包括递归、迭代和使用缓存(动态规划)来优化递归版本。 1. 递归方式(最简单但效率较低) def fibonacci_recursive(n)…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
