当前位置: 首页 > news >正文

【模型】感知器

感知器是最早的人工神经网络之一,也是现代深度学习的基础之一。

1. 感知器(Perceptron)

1.1 定义与功能

感知器是一种线性二分类模型,旨在模拟生物神经元的基本功能。它通过对输入特征进行加权求和,并应用激活函数来做出分类决策。感知器的数学表达式如下:

在这里插入图片描述
其中:

  • xi 是输入特征。
  • wi​ 是输入特征的权重。
  • b 是偏置项。
  • activation 通常是阶跃函数(例如,Heaviside 函数),用于将输出转换为类别标签(如0或1)。

1.2 工作原理

感知器通过以下步骤进行训练和预测:

  1. 初始化:随机初始化权重 wi 和偏置 b。
  2. 前向传播:计算加权和并应用激活函数,得到预测输出 y。
  3. 损失计算:比较预测输出与实际标签,计算误差。
  4. 权重更新:根据误差调整权重和偏置,通常使用感知器学习规则:

在这里插入图片描述
其中,η 是学习率,t 是目标标签,y 是预测输出。

1.3 感知器的限制

尽管感知器在处理线性可分问题上表现出色,但它无法解决 非线性可分 的问题,例如 异或问题(XOR)。这种局限性在 Marvin Minsky 和 Seymour Papert 于1969年出版的著作《感知器》(Perceptrons)中被详细讨论,导致了神经网络研究一度陷入低谷,被称为“神经网络的冬天”。

2. Frank Rosenblatt

2.1 背景介绍

Frank Rosenblatt(1928-1971)是一位美国心理学家和计算机科学家,他在神经网络和人工智能领域做出了开创性的贡献。Rosenblatt 在1960年代早期于康奈尔航空实验室(Cornell Aeronautical Laboratory)工作时,开发了感知器模型 The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain。

2.2 贡献与影响

  • 感知器模型:Rosenblatt 的感知器模型是最早的人工神经网络之一,奠定了后续多层神经网络和深度学习的发展基础。
  • 学习算法:他提出的感知器学习规则为神经网络的权重调整提供了早期的方法论。
  • 认知心理学:除了在计算机科学领域的贡献,Rosenblatt 还在认知心理学和信息处理理论方面有所建树。

2.3 遗产与评价

尽管感知器存在局限性,Rosenblatt 的工作为后来的神经网络研究提供了宝贵的基础。随着多层感知器(Multi-Layer Perceptron, MLP)和反向传播算法(Backpropagation)的发展,神经网络克服了单层感知器的不足,能够解决更复杂的非线性问题。Rosenblatt 的感知器模型被视为现代深度学习的前身,其理念和方法在今天依然具有重要的学术价值和实际应用意义。

3. 感知器的历史意义

3.1 早期神经网络研究

感知器是最早尝试模拟人脑神经元功能的计算模型之一。它引发了对人工智能和机器学习的广泛兴趣,推动了早期神经网络理论的发展。

3.2 影响深远

虽然感知器模型在处理复杂任务时受到限制,但它的提出为后续多层神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等复杂结构的设计提供了重要的参考和启发。

3.3 现代深度学习的基础

现代深度学习模型,如深度前馈网络、Transformer 和生成对抗网络(GANs),都在感知器的基础上发展而来。感知器的基本思想和学习机制仍然在这些先进模型中发挥着重要作用。

相关文章:

【模型】感知器

感知器是最早的人工神经网络之一,也是现代深度学习的基础之一。 1. 感知器(Perceptron) 1.1 定义与功能 感知器是一种线性二分类模型,旨在模拟生物神经元的基本功能。它通过对输入特征进行加权求和,并应用激活函数来…...

HtmlCss 基础总结(基础好了才是最能打的)五

Html&Css 基础学习回顾总结 Html&Css 基础总结(基础好了才是最能打的)一 Html&Css 基础总结(基础好了才是最能打的)二 Html&Css 基础总结(基础好了才是最能打的)三 Html&Css 基础总结…...

图神经网络实战——分层自注意力网络

图神经网络实战——分层自注意力网络 0. 前言1. 分层自注意力网络1.1 模型架构1.2 节点级注意力1.3 语义级注意力1.4 预测模块 2. 构建分层自注意力网络相关链接 0. 前言 在异构图数据集上,异构图注意力网络的测试准确率为 78.39%,比之同构版本有了较大…...

基于深度学习的数字识别系统的设计与实现(python、yolov、PyQt5)

💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…...

ChatGPT 提取文档内容,高效制作PPT、论文

随着人工智能生成内容(AIGC)的快速发展,利用先进的技术工具如 ChatGPT 的 RAG(Retrieval-Augmented Generation,检索增强生成)模式,可以显著提升文档内容提取和内容创作的效率。以下将详细介绍如…...

3、等保1.0 与 2.0 的区别

数据来源:3.等保1.0和2.0的区别_哔哩哔哩_bilibili 等保1.0时代VS等保2.0时代五个规定动作:定级、备案、建设整改、等级测评、监督检查工作内容维持5个规定动作,增加风险评估、安全监测、通报预警、事件调查、数据防护自主可控、供应链安全、…...

Angular面试题九

一、在Angular中,你如何管理全局状态或跨组件共享数据?有哪些常见的实现方式? 在Angular中,管理全局状态或跨组件共享数据是应用开发中的一个重要方面。这有助于保持数据的一致性和可维护性,特别是在复杂的应用中。以下…...

(转载)智能指针shared_ptr从C++11到C++20

shared_ptr和动态数组 - apocelipes - 博客园 (cnblogs.com) template<typename T> std::shared_ptr<T> make_shared_array(size_t size) { return std::shared_ptr<T>(new T[size],std::default_delete<T[]>()); } std::shar…...

Ubuntu 上安装 Miniconda

一、下载 Miniconda 打开终端。访问 Anaconda 官方仓库下载页面https://repo.anaconda.com/miniconda/选择Miniconda3-py310_24.7.1-0-Linux-x86_64.sh&#xff0c;进行下载。文件名当中的py310_24.7.1表示&#xff0c;在 conda 的默认的 base 环境中的 Python 版本是3.10&…...

【Vue系列五】—Vue学习历程的知识分享!

前言 本篇文章讲述前端工程化从模块化到如今的脚手架的发展&#xff0c;以及Webpack、Vue脚手架的详解&#xff01; 一、模块化 模块化就是把单独的功能封装到模块&#xff08;文件&#xff09;中&#xff0c;模块之间相互隔离&#xff0c;但可以通过特定的接口公开内部成员…...

CaLM 因果推理评测体系:如何让大模型更贴近人类认知水平?

CaLM 是什么 CaLM&#xff08;Causal Evaluation of Language Models&#xff0c;以下简称“CaLM”&#xff09;是上海人工智能实验室联合同济大学、上海交通大学、北京大学及商汤科技发布首个大模型因果推理开放评测体系及开放平台。首次从因果推理角度提出评估框架&#xff…...

深入探索卷积神经网络(CNN)

深入探索卷积神经网络&#xff08;CNN&#xff09; 前言图像的数字表示灰度图像RGB图像 卷积神经网络&#xff08;CNN&#xff09;的架构基本组件卷积操作填充&#xff08;Padding&#xff09;步幅&#xff08;Strides&#xff09; 多通道图像的卷积池化层全连接层 CNN与全连接…...

【C++篇】手撕 C++ string 类:从零实现到深入剖析的模拟之路

文章目录 C string 类的模拟实现&#xff1a;从构造到高级操作前言第一章&#xff1a;为什么要手写 C string 类&#xff1f;1.1 理由与价值 第二章&#xff1a;实现一个简单的 string 类2.1 基本构造与析构2.1.1 示例代码&#xff1a;基础的 string 类实现2.1.2 解读代码 2.2 …...

毕业设计选题:基于ssm+vue+uniapp的校园失物招领小程序

开发语言&#xff1a;Java框架&#xff1a;ssmuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;M…...

[系统设计总结] - Proximity Service算法介绍

问题描述 Proximity Service广泛应用于各种地图相关的服务中比如外卖&#xff0c;大众点评&#xff0c;Uber打车&#xff0c;Google地图中&#xff0c;其中比较关键的是我们根据用户的位置来快速找到附近的餐厅&#xff0c;司机&#xff0c;外卖员也就是就近查询算法。 主流的…...

变压吸附制氧机的应用范围

变压吸附制氧机是一种利用变压吸附技术从空气中分离出氧气的设备。该技术通过吸附剂在不同压力下的吸附与解吸性能&#xff0c;实现了氧气的有效分离和纯化。 工业领域 在工业领域&#xff0c;变压吸附制氧机同样具有广泛的应用。首先&#xff0c;钢铁企业在生产过程中需要大量…...

MATLAB绘图基础8:双变量图形绘制

参考书&#xff1a;《 M A T L A B {\rm MATLAB} MATLAB与学术图表绘制》(关东升)。 8.双变量图形绘制 8.1 散点图 散点图用于显示两个变量间的关系&#xff0c;每个数据点在图上表示为一个点&#xff0c;一个变量在 X {\rm X} X轴&#xff0c;一个变量在 Y {\rm Y} Y轴&#…...

Appium高级话题:混合应用与原生应用测试策略

Appium高级话题&#xff1a;混合应用与原生应用测试策略 在移动应用开发领域&#xff0c;混合应用与原生应用各有千秋&#xff0c;但它们的测试策略却大相径庭。本文旨在深入探讨这两种应用类型的测试挑战&#xff0c;并介绍如何利用自动化测试软件ItBuilder高效解决这些问题&…...

windows源码安装protobuf,opencv,ncnn

安装笔记 cmake 在windows可以使用-G"MinGW Makefiles" 搭配make使用&#xff0c;install出来的lib文件时.a结尾的&#xff0c;适合linux下面使用。所以在windows上若无需求使用-G"NMake Makefiles" 搭配nmake。 但是windows上使用-G"NMake Makefil…...

MicroPython 怎么搭建工程代码

在MicroPython中搭建工程代码可以遵循以下步骤&#xff1a; 1. 准备工作 安装MicroPython固件&#xff1a;确保已经将MicroPython烧录到ESP32开发板中。准备开发环境&#xff1a; 可以使用文本编辑器&#xff08;如VS Code、Thonny、uPyCraft等&#xff09;来编写代码。 2.…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...