当前位置: 首页 > news >正文

每天认识几个maven依赖(aislib+A1TRMI+Andromda+Annogen)

十七、aislib

1、是什么?

aislib用于与人工智能(AI)相关的任务。这可能包括支持机器学习、数据分析或其他 AI 功能的工具。用于集成或扩展 AI 功能到 Java 项目中。

2、有什么用?

  1. 机器学习
    • 提供各种机器学习算法和工具,帮助用户构建、训练和评估模型。
    • 支持监督学习、无监督学习、深度学习等多种类型的机器学习方法。
  2. 数据处理
    • 提供数据预处理、特征工程和数据清洗的工具。
    • 支持数据集的分割、归一化和标准化。
  3. 推荐系统
    • 实现推荐算法,如协同过滤、内容推荐等。
    • 帮助开发者构建个性化的推荐系统。
  4. 自然语言处理
    • 提供文本处理和分析的工具,例如情感分析、主题建模、命名实体识别等。
    • 支持构建聊天机器人、语义分析等应用。
  5. 模型评估和优化
    • 提供模型评估的工具,如交叉验证、性能指标计算等。
    • 支持模型参数调优和优化策略。
  6. 集成和部署
    • 帮助将 AI 模型集成到 Java 应用程序中。
    • 支持将训练好的模型部署到生产环境中。

十八、A1TRMI

1、是什么?

A1TRMI 用于与 TRMITibco Remote Method Invocation)进行集成。它通常用于管理和自动化 TRMI 服务的构建和部署。这个插件帮助开发者通过 Maven 构建、配置和发布 TRMI 应用程序,从而简化了与 TRMI 相关的开发过程。

TRMI:用于在分布式系统中进行远程过程调用(RPC)。TRMI 使得不同系统或应用程序可以通过网络调用彼此的方法,从而实现跨网络的远程服务交互。

2、有什么用?

  1. 自动化构建:在 Maven 构建过程中自动处理 TRMI 服务的编译和打包。
  2. 配置管理:简化 TRMI 服务的配置和部署过程。
  3. 集成测试:提供支持 TRMI 服务的集成测试功能。
  4. 部署:自动化部署 TRMI 服务到目标环境中。

十九、Andromda

1、是什么?

Andromda 是一个开源的建模和代码生成工具,主要用于 Java EE 应用程序的开发。它通过 UML(统一建模语言)模型将高层次的设计转化为可运行的代码,从而提高开发效率和代码质量。

2、有什么用?

  1. UML 支持:Andromda 可以从 UML 模型生成代码,这使得开发者可以专注于设计,而不必手动编写大量代码。
  2. 代码生成:支持多种编程语言和框架的代码生成,主要针对 Java EE,但也可以扩展支持其他技术栈。
  3. 插件架构:Andromda 采用插件架构,用户可以根据需要添加或自定义功能。
  4. 模板驱动:通过模板来控制生成的代码结构和样式,便于适应不同项目的需求。
  5. 集成开发环境:可以与多种 IDE(如 Eclipse)集成,提升开发体验。
使用场景
  • 快速原型开发:通过 UML 设计快速生成代码,适合需要快速迭代和验证的项目。
  • 大型企业应用:可以帮助在复杂的项目中保持一致性和可维护性,降低开发成本。

二十、Annogen

1、是什么?

Annogen 是一个用于生成 Java 注解处理器的工具,旨在简化和自动化注解处理的过程。它通过分析 Java 类和方法,自动生成相应的注解处理代码,从而提高开发效率。

2、有什么用?

  1. 自动化代码生成:根据定义的注解自动生成处理逻辑,减少手动编写代码的工作量。
  2. 支持自定义注解:可以为用户自定义的注解生成处理器,便于扩展。
  3. 提高一致性:通过自动生成代码,确保处理逻辑的一致性,降低人为错误。
  4. 集成开发环境:可以与常用的开发环境配合使用,提升开发体验。
使用场景
  • 简化注解处理:在大型项目中,使用 Annogen 可以帮助团队更高效地管理和使用注解。
  • 快速原型开发:对于需要频繁变更注解的项目,Annogen 可以快速适应需求变化。

相关文章:

每天认识几个maven依赖(aislib+A1TRMI+Andromda+Annogen)

十七、aislib 1、是什么? aislib用于与人工智能(AI)相关的任务。这可能包括支持机器学习、数据分析或其他 AI 功能的工具。用于集成或扩展 AI 功能到 Java 项目中。 2、有什么用? 机器学习: 提供各种机器学习算法和…...

每日算法1(快慢指针)

通过一道题来了解快慢指针 这是一道力扣的算法题,首先来读题,是删除链表的中间元素,先来分析一下题,链表一共有三种可能,第一种是空链表,第二种链表的个数是偶数,第三种是链表的个数是奇数&…...

基于RealSense D435相机简单实现手部姿态重定向

基于Intel RealSense D435 相机和 MediaPipe的手部姿态检测,进一步简单实现手部姿态与机器人末端的重定向。 假设已经按照【基于 RealSenseD435i相机实现手部姿态检测】配置好所需的库和环境,并且有一个可以控制的机器人接口。 一、手部姿态重定向介绍 …...

Linux下搭建iSCSI共享存储-Tgt

Linux下搭建iSCSI共享存储-Tgt 在Linux上使用tgt搭建iSCSI共享存储,可以实现多个客户端同时访问共享存储。 1. 安装iSCSI Target软件包 使用下面命令安装: # centos sudo yum install scsi-target-utils sudo systemctl status tgtd# ubuntu sudo ap…...

js中正则表达式中【exec】用法深度解读

exec() 是 JavaScript 正则表达式对象(RegExp)中的一个方法,用于匹配字符串中的特定模式,并返回匹配结果。它比 test() 和 match() 更强大,因为它不仅仅返回匹配成功与否,还返回匹配的具体内容及其相关信息…...

Dockerfile的详解与案例

《Dockerfile 详解与案例》 一、Dockerfile 简介 Dockerfile 是一个用来构建 Docker 镜像的文本文件,它包含了一系列指令,用于描述如何创建一个 Docker 镜像。通过 Dockerfile,你可以定义镜像的基础环境、安装软件包、设置环境变量等操作&a…...

[spring]用MyBatis XML操作数据库 其他查询操作 数据库连接池 mysql企业开发规范

文章目录 一. MyBatis XML配置文件1. 配置链接字符串和MyBatis2. 写持久层代码方法定义Interface方法实现xml测试 3. 增删改查增:删改查 二. 开发规范(mysql)三. 其他查询操作1. 多表查询2. #{} 和 ${}(面试题)使用区别 排序功能like查询 三. 数据库连接池 一. MyBatis XML配置…...

[产品管理-33]:实验室技术与商业化产品的距离,实验室技术在商业化过程中要越过多少道“坎”?

目录 一、实验室技术 1.1 实验室研究性技术 1.2 技术发展的S曲线 技术发展S曲线的主要阶段和特点 技术发展S曲线的意义和应用 二、实验室技术商业化的路径 2.1 实验室技术与商业化产品的距离 1、技术成熟度与稳定性 - 技术自身 2、市场需求与适应性 - 技术是满足需求 …...

【有啥问啥】 Self-Play技术:强化学习中的自我进化之道

Self-Play技术:强化学习中的自我进化之道 在人工智能的快速发展中,强化学习(Reinforcement Learning, RL)已成为推动智能体自主学习与优化的关键力量。Self-Play技术,作为强化学习领域的一项前沿创新,通过…...

LCR 008. 长度最小的子数组

文章目录 1.题目2.思路3.代码 1.题目 LCR 008. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度**。**如果不存在符合条件…...

uniApp 解决uniapp三方地图获取位置接口的请求次数限制问题,分别提供 Android 和 iOS 的实现方法(原生插件获取)

以下是使用 UniApp 编写获取位置信息的原生插件步骤,这里分别提供 Android 和 iOS 的实现方法。 一、Android 端实现 创建原生插件模块 在 UniApp 项目目录下创建一个目录,比如 nativeplugins/android/locationPlugin。使用 Android Studio 创建一个 An…...

Zabbix Agent 监控 MySQL 进程状态

1. 使用 Zabbix Agent 监控 MySQL 进程状态 这是最简单的方式,通过 Zabbix Agent 监控 MySQL 进程是否在运行。具体步骤如下: 步骤1: 确认 MySQL 进程的名称 在你的 CentOS 服务器上,运行以下命令来确认 MySQL 进程的名称: ps aux | grep mysql通常,MySQL 服务的进程名…...

【模型】感知器

感知器是最早的人工神经网络之一,也是现代深度学习的基础之一。 1. 感知器(Perceptron) 1.1 定义与功能 感知器是一种线性二分类模型,旨在模拟生物神经元的基本功能。它通过对输入特征进行加权求和,并应用激活函数来…...

HtmlCss 基础总结(基础好了才是最能打的)五

Html&Css 基础学习回顾总结 Html&Css 基础总结(基础好了才是最能打的)一 Html&Css 基础总结(基础好了才是最能打的)二 Html&Css 基础总结(基础好了才是最能打的)三 Html&Css 基础总结…...

图神经网络实战——分层自注意力网络

图神经网络实战——分层自注意力网络 0. 前言1. 分层自注意力网络1.1 模型架构1.2 节点级注意力1.3 语义级注意力1.4 预测模块 2. 构建分层自注意力网络相关链接 0. 前言 在异构图数据集上,异构图注意力网络的测试准确率为 78.39%,比之同构版本有了较大…...

基于深度学习的数字识别系统的设计与实现(python、yolov、PyQt5)

💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…...

ChatGPT 提取文档内容,高效制作PPT、论文

随着人工智能生成内容(AIGC)的快速发展,利用先进的技术工具如 ChatGPT 的 RAG(Retrieval-Augmented Generation,检索增强生成)模式,可以显著提升文档内容提取和内容创作的效率。以下将详细介绍如…...

3、等保1.0 与 2.0 的区别

数据来源:3.等保1.0和2.0的区别_哔哩哔哩_bilibili 等保1.0时代VS等保2.0时代五个规定动作:定级、备案、建设整改、等级测评、监督检查工作内容维持5个规定动作,增加风险评估、安全监测、通报预警、事件调查、数据防护自主可控、供应链安全、…...

Angular面试题九

一、在Angular中,你如何管理全局状态或跨组件共享数据?有哪些常见的实现方式? 在Angular中,管理全局状态或跨组件共享数据是应用开发中的一个重要方面。这有助于保持数据的一致性和可维护性,特别是在复杂的应用中。以下…...

(转载)智能指针shared_ptr从C++11到C++20

shared_ptr和动态数组 - apocelipes - 博客园 (cnblogs.com) template<typename T> std::shared_ptr<T> make_shared_array(size_t size) { return std::shared_ptr<T>(new T[size],std::default_delete<T[]>()); } std::shar…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?

在现代前端开发中&#xff0c;Utility-First (功能优先) CSS 框架已经成为主流。其中&#xff0c;Tailwind CSS 无疑是市场的领导者和标杆。然而&#xff0c;一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...