当前位置: 首页 > news >正文

PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询

在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在 PostgreSQL 中安装 pgvector 插件,用于存储和检索向量数据,并展示如何通过 Python 脚本向数据库插入向量并执行相似度查询。

一、安装 PostgreSQL 并配置 pgvector 插件

1. 安装 PostgreSQL

首先,确保你已经安装了 PostgreSQL。可以通过 Docker 快速安装 PostgreSQL。

docker pull postgres
docker run --name my_postgres -e POSTGRES_PASSWORD=mysecretpassword -e POSTGRES_USER=myuser -e POSTGRES_DB=mydb -p 5432:5432 -d postgres

上述命令会启动一个名为 my_postgres 的容器,并暴露 5432 端口以便外部连接。

2. 安装 pgvector 插件

pgvector 插件可以让你在 PostgreSQL 中存储向量,并支持高效的向量相似度查询。通过以下步骤安装 pgvector

进入 PostgreSQL 容器后,执行以下命令:

docker exec -it my_postgres bash
apt update
apt install -y postgresql-server-dev-all make gcc
git clone https://github.com/pgvector/pgvector.git
cd pgvector
make
make install
3. 创建数据库并启用 pgvector 插件

进入 PostgreSQL 终端,创建一个数据库并启用 pgvector 插件:

psql -U myuser -d mydb

在 PostgreSQL 终端中执行:

CREATE EXTENSION vector;

这样我们就可以使用 pgvector 插件来存储和检索向量了。

二、创建向量表

接下来,我们需要创建一个用于存储向量的表。假设我们有一个名为 knowledge.vector_data 的表,它将存储用户 ID、文件 ID、文本内容以及对应的向量。

-- 创建 schema
CREATE SCHEMA knowledge;-- 创建 vector_data 表
CREATE TABLE knowledge.vector_data (id SERIAL PRIMARY KEY,  -- 自动递增的主键user_id BIGINT NOT NULL DEFAULT 0,file_id BIGINT NOT NULL DEFAULT 0,content VARCHAR(65535) NOT NULL DEFAULT '',  -- 存储文本内容featrue VECTOR(1024),  -- 存储1024维向量created TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);-- 创建 HNSW 索引并指定操作符类 (例如,使用余弦相似度)
CREATE INDEX ON knowledge.vector_data USING hnsw (featrue vector_cosine_ops);

这个表将存储文本内容及其对应的 1024 维向量。我们选择 1024 维是因为一些嵌入模型生成的向量维度较高。如果你的向量维度不同,可以调整此值。

三、Python 测试程序:向量化并插入数据库

接下来,我们将编写一个 Python 脚本,将一些测试句子向量化后插入数据库,并进行相似度查询。

1. 安装所需 Python 库

首先,你需要安装 sentence-transformers 库来进行句子的向量化处理,并使用 psycopg2 连接 PostgreSQL:

pip install sentence-transformers psycopg2 numpy
2. 完整的 Python 脚本

以下是完整的 Python 脚本,它可以将测试语句向量化后插入 PostgreSQL 数据库,然后执行相似度查询并返回相似的句子及其相似度评分:

import psycopg2
from sentence_transformers import SentenceTransformer
import numpy as np# 数据库连接信息
DB_HOST = "localhost"
DB_PORT = "5432"
DB_NAME = "mydb"
DB_USER = "myuser"
DB_PASSWORD = "mysecretpassword"# 连接 PostgreSQL 数据库
def connect_db():conn = psycopg2.connect(host=DB_HOST,port=DB_PORT,dbname=DB_NAME,user=DB_USER,password=DB_PASSWORD)return conn# 向量化函数,并将向量扩展到 1024 维
def vectorize_sentences(sentences, target_dim=1024):# 使用预训练模型 "all-MiniLM-L6-v2" 向量化句子model = SentenceTransformer('all-MiniLM-L6-v2')sentence_vectors = model.encode(sentences)# 将 384 维向量扩展到 1024 维,使用 0 进行填充padded_vectors = [np.pad(vector, (0, target_dim - len(vector)), 'constant') for vector in sentence_vectors]return padded_vectors# 将向量插入数据库
def insert_vectors_to_db(sentences, vectors):conn = connect_db()cursor = conn.cursor()# 将句子和其对应的向量插入表中for sentence, vector in zip(sentences, vectors):sql = """INSERT INTO knowledge.vector_data (user_id, file_id, content, featrue)VALUES (%s, %s, %s, %s)"""cursor.execute(sql, (1, 1, sentence, vector.tolist()))  # 假设 user_id 和 file_id 为 1print(f"Inserted sentence: {sentence}")conn.commit()cursor.close()conn.close()# 查询最相似的句子
def query_similar_sentences(target_vector):conn = connect_db()cursor = conn.cursor()# 转换向量为 PostgreSQL 可接受的格式vector_str = '{' + ','.join(map(str, target_vector)) + '}'# 查询相似句子sql = """SELECT content, 1 - (featrue <=> %s) AS similarityFROM knowledge.vector_dataORDER BY featrue <=> %s ASCLIMIT 5;"""cursor.execute(sql, (vector_str, vector_str))results = cursor.fetchall()for row in results:print(f"Sentence: {row[0]}, Similarity: {row[1]}")cursor.close()conn.close()if __name__ == "__main__":# 测试语句sentences = ["This is a test sentence.","Another sentence for testing.","PostgreSQL vector database integration."]# 向量化测试语句,并扩展到 1024 维vectors = vectorize_sentences(sentences, target_dim=1024)# 将向量插入数据库insert_vectors_to_db(sentences, vectors)# 目标句子,用于查询相似句子target_sentence = "This is a test sentence."# 获取目标句子的向量target_vector = vectorize_sentences([target_sentence], target_dim=1024)[0]# 查询最相似的句子query_similar_sentences(target_vector)

四、执行流程

  1. 向量化并插入数据库:通过 insert_vectors_to_db 函数,脚本会将输入的测试语句向量化,并将其存储到 PostgreSQL 中的 knowledge.vector_data 表。
  2. 相似度查询:通过 query_similar_sentences 函数,脚本会根据输入的目标句子,查询出最相似的句子,并按相似度排序返回结果。

五、结论

通过本文的步骤,你可以在 PostgreSQL 中使用 pgvector 插件存储和查询向量数据。这种方法可以用于文本、图像等数据的相似度检索。我们利用 sentence-transformers 生成句子嵌入,将其存储在 PostgreSQL 数据库中,并通过 SQL 查询高效地返回相似的句子。

使用向量数据库,可以让我们在处理大量嵌入数据时,充分发挥数据库和机器学习的结合力量,实现高效、快速的向量检索。

相关文章:

PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询

在现代的机器学习和人工智能应用中&#xff0c;向量相似度检索是一个非常重要的技术&#xff0c;尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在 PostgreSQL 中安装 pgvector 插件&#xff0c;用于存储和检索向量数据&#xff0c;并展示如何通过 Python 脚…...

UR机器人坐标系转化

UR机器人读取上来的坐标系是旋转矢量&#xff0c;每次都要查一下怎么转换&#xff0c;在这里记录以下...

【每日一题】LeetCode 2306.公司命名(位运算、数组、哈希表、字符串、枚举)

【每日一题】LeetCode 2306.公司命名&#xff08;位运算、数组、哈希表、字符串、枚举&#xff09; 题目描述 给定一个字符串数组 ideas&#xff0c;表示在公司命名过程中使用的名字列表。我们需要从 ideas 中选择两个不同的名字&#xff0c;称为 ideaA 和 ideaB。然后交换 i…...

240922-chromadb的基本使用

A. 背景介绍 ChromaDB 是一个较新的开源向量数据库&#xff0c;专为高效的嵌入存储和检索而设计。与其他向量数据库相比&#xff0c;ChromaDB 更加专注于轻量化、简单性和与机器学习模型的无缝集成。它的核心目标是帮助开发者轻松管理和使用高维嵌入向量&#xff0c;特别是与生…...

工厂模式和抽象工厂模式的实验报告

1. 实验结果&#xff1a; 记录并附上不同模型对象&#xff08;例如&#xff1a;士兵、机器人、骑士&#xff09;的展示效果截图。 2. 性能分析&#xff1a; 记录并比较抽象工厂模式与直接实例化的性能测试结果&#xff0c;分析它们在不同数量级对象创建时的开销与效益。 2.1…...

C标准库<string.h>-str、strn开头的函数

char *strcat(char *dest, const char *src) 函数功能 strcat 函数用于将一个字符串追加到另一个字符串的尾部。 参数解释 dest&#xff1a;指向目标字符串的指针&#xff0c;这个字符串的尾部将被追加 src 字符串的内容。src&#xff1a;指向源字符串的指针&#xff0c;其…...

Anaconda/Miniconda的删除和安装

要在 MacBook 上删除 Anaconda 或 Miniconda,并重新安装它,您可以按照以下步骤进行操作。 删除 Anaconda/Miniconda 1. 删除 Anaconda/Miniconda 文件和目录 打开 终端 并运行以下命令来删除安装目录。 对于 Anaconda,通常安装在 ~/anaconda3: rm -rf ~/anaconda3对于…...

【Harmony】轮播图特效,持续更新中。。。。

效果预览 swiper官网例子 Swiper 高度可变化 两边等长露出&#xff0c;跟随手指滑动 Swiper 指示器导航点位于 Swiper 下方 卡片楼层层叠一 一、官网 例子 参考代码&#xff1a; // xxx.ets class MyDataSource implements IDataSource {private list: number[] []cons…...

Go 并发模式:管道的妙用

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在编写程序时,我们通常不会一口气写出一个冗长的函数。相反,我们通过构建函数、结构体和方法等抽象来简化代码。这不仅有助于隐藏不重要的细节,还使我们能够专注于某一部分代码,而不必担心影响其他部分。然而…...

CAN通信详解

1、CAN介绍 1.1、什么是CAN? CAN&#xff08;Controller Area Network&#xff09; 即控制器局域网&#xff0c;是ISO国际标准化的串行通信协议。 开发目的&#xff1a;为了满足汽车产业的“减少线束的数量”、“通过多个LAN&#xff0c;进行大量数据的高速通信”…...

52 文本预处理_by《李沐:动手学深度学习v2》pytorch版

系列文章目录 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 文章目录 系列文章目录一、理论部分二、代码读取数据集词元化词表整合所有功能小结练习 一、理论部分 对于序列数据处理问题&#xff0c;我们在序列处理中评估了所需的统计工具和预测时面临的挑战。 …...

【python】字符串扩展-格式化的精度控制

字符串扩展 字符串的三种定义方式字符串拼接字符串格式化格式化的精度控制字符串格式化方式2对表达式进行格式化 学习目标 掌握格式化字符串的过程中做数字的精度控制 字符串格式化 name "小明" set_up_year 2006 stock_price 19.99 message "我是&…...

C++第一次练习

题目1 class Solution { public:bool isletter(char s){if(s<z&&s>a)return true;if(s>A&&s<Z)return true;return false;}string reverseOnlyLetters(string s) {if(s.empty()){return s;}int left,right;left0;rights.size()-1;while(left<ri…...

计算机毕业设计 基于Python的医疗预约与诊断系统 Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…...

JAVA基础:正则表达式,String的intern方法,StringBuilder可变字符串特点与应用,+连接字符串特点

1 String中的常用方法2 1.1 split方法 将字符串按照指定的内容进行分割&#xff0c;将分割成的每一个子部分组成一个数组 分割内容不会出现在数组中 实际上该方法不是按照指定的简单的符号进行分割的&#xff0c;而是按照正则表达式进行分割 1.2 正则表达式 用简单的符号组合…...

前端接口报错302 [已解决]

前端接口报错302 [已解决] 在前端开发中&#xff0c;与后端接口的交互是项目成功的关键。然而&#xff0c;遇到如302这样的状态码报错时&#xff0c;可能会让开发者感到困惑。本文将通过详细解析和多个代码案例&#xff0c;帮助你深入理解前端接口报错302&#xff0c;并提供有效…...

【网络安全】利用未授权API接口实现创建Support Ticket

未经许可,不得转载。 文章目录 正文目标为一个技术平台,客户可以通过该平台预订不同类型的服务。 正文 redacted.com 是主域,但所有流量都通过 api.redacted.com。我过去曾使用该公司预订了一些服务,因此我的帐户中有预订历史。 我对我的订单开具了 Support Ticket,此时…...

气压高度加误差的两种方法(直接添加 vs 换算到气压误差),附MATLAB程序

在已知高度真实值时,如果需要计算此高度下的气压计误差,可考虑本文所述的两种方法 气压高度 气压与高度之间的关系可以用大气压的垂直变化来描述。随着高度的增加,气压通常会下降。这是因为空气的密度在高度增加时减少,导致上方空气柱对下方空气施加的压力减小。 主要关系…...

Word 制作会议名牌教程

文章目录 Part.I IntroductionPart.II 制作步骤 Part.I Introduction 本文详细介绍了如何用 Word 制作会议名牌&#xff0c;附有笔者制作好的一个成品&#xff08;戳我下载~&#xff09;。 下面是一些常识 会议名牌尺寸&#xff1a;100mm 180mm Part.II 制作步骤 1、新建文…...

浮动静态路由

浮动静态路由 首先我们知道静态路由的默认优先级是60&#xff0c;然后手动添加一条静态路由优先级为80的路由作为备份路由。当主路由失效的备份路由就会启动。 一、拓扑图 二、基本配置 1.R1: <Huawei>system-view [Huawei]sysname R1 [R1]interface GigabitEthernet…...

JavaWeb初阶 day1

目录 tomcat目录结构 tomcat:web服务器软件 项目部署的方式 直接将项目放到webapps下 配置conf/server.xml文件 在conf\Catalina\localhost创建任意名称的xml文件。在文件中编写 静态项目和动态项目 Servlet Servlet执行原理 Servlet方法&#xff08;生命周期&#x…...

OpenAPI鉴权(二)jwt鉴权

一、思路 前端调用后端可以使用jwt鉴权&#xff1b;调用三方接口也可以使用jwt鉴权。对接多个三方则与每个third parth都约定一套token规则&#xff0c;因为如果使用同一套token&#xff0c;token串用可能造成权限越界问题&#xff0c;且payload交叉业务不够清晰。下面的demo包…...

【Rust练习】16.模式

文章题目来自&#xff1a;https://practice-zh.course.rs/pattern-match/patterns.html 1 &#x1f31f;&#x1f31f; 使用 | 可以匹配多个值, 而使用 … 可以匹配一个闭区间的数值序列 fn main() {} fn match_number(n: i32) {match n {// 匹配一个单独的值1 > println!(…...

深度学习(4):torch.nn.Module

文章目录 一、是什么二、nn.Module 的核心功能三、nn.Module 的基本用法1. 定义自定义模型2. 初始化模型3. 模型的使用 四、nn.Module 的关键特性1. 自动注册子模块和参数2. forward 方法3. 不需要定义反向传播 五、常用的内置模块六、示例&#xff1a;创建一个简单的神经网络1…...

(14)关于docker如何通过防火墙做策略限制

关于docker如何通过防火墙做策略限制 1、iptables相关问题 在Iptables防火墙中包含四种常见的表&#xff0c;分别是filter、nat、mangle、raw。 filter&#xff1a;负责过滤数据包。 filter表可以管理INPUT、OUTPUT、FORWARD链。 nat&#xff1a;用于网络地址转换。 nat表…...

新React开发人员应该如何思考

React是一个用于构建用户界面的流行JavaScript库&#xff0c;通过使开发人员能够创建可重用组件并有效管理复杂的UI&#xff0c;彻底改变了前端开发。然而&#xff0c;采用正确的心态对于新开发人员驾驭React独特的范式至关重要。让我们来探索塑造“React思维模式”的基本原则和…...

解密.bixi、.baxia勒索病毒:如何安全恢复被加密数据

导言 在数字化时代&#xff0c;数据安全已成为个人和企业面临的重大挑战之一。随着网络攻击手段的不断演进&#xff0c;勒索病毒的出现尤为引人关注。其中&#xff0c;.bixi、.baxia勒索病毒是一种新型的恶意软件&#xff0c;它通过加密用户的重要文件&#xff0c;迫使受害者支…...

开源 AI 智能名片与 S2B2C 商城小程序:嫁接权威实现信任与增长

摘要&#xff1a;本文探讨了嫁接权威在产品营销中的重要性&#xff0c;并结合开源 AI 智能名片与 S2B2C 商城小程序&#xff0c;阐述了如何通过与权威关联来建立客户信任&#xff0c;提升产品竞争力。强调了在当今商业环境中&#xff0c;巧妙运用嫁接权威的方法&#xff0c;能够…...

S-Clustr-Simple 飞机大战:骇入现实的建筑灯光游戏

项目地址:https://github.com/MartinxMax/S-Clustr/releases Video https://www.youtube.com/watch?vr3JIZY1olro 飞机大战 按键操作: ←:向左移动 →:向右移动 Space:发射子弹 这是一个影子集群的游戏插件&#xff0c;可以将游戏画面映射到现实的设备&#xff0c;允许恶…...

MySQL:存储引擎简介和库的基本操作

目录 一、存储引擎 1、什么是存储引擎&#xff1f; 2、存储引擎的分类 关系型数据库存储引擎&#xff1a; 非关系型数据库存储引擎&#xff1a; 分布式数据库存储引擎&#xff1a; 3、常用的存储引擎及优缺点 1、InnoDb存储引擎 2、MyISAM存储引擎 3、MEMORY存储引擎 …...