当前位置: 首页 > news >正文

xQTLs 共定位分析(XQTLbiolinks包)

XQTL 共定位分析

XQTLbiolinks 是一个端到端的生物信息学工具,由深圳湾实验室李磊研究团队开发,用于高效地分析公共或用户定制的个xQTLs数据。该软件提供了一个通过与 xQTLs 共定位分析进行疾病靶基因发现的流程,以检测易感基因和致病变异。

图片

github地址

https://github.com/dingruofan/xQTLbiolinks

0. R包下载与引用

用户可以通过以下代码安装或者引用:

#if (!require("BiocManager", quietly = TRUE)){install.packages("BiocManager")}
#BiocManager::install("SummarizedExperiment") # For windows or linux
#if(!require("devtools")){install.packages("devtools")}
#devtools::install_github("dingruofan/xQTLbiolinks")
library(data.table)
library(xQTLbiolinks)
library(stringr)
library(coloc)

1.数据预处理

使用示例文件(GRCh38 版本基因组)的 GWAS 摘要汇总数据,在大脑 - 小脑中执行共定位分析:

gwasDF <- fread("http://bioinfo.szbl.ac.cn/xQTL_biolinks/xqtl_data/gwasDFsub.txt")
tissueSiteDetail="Brain - Cerebellum"
head(gwasDF)

输入的数据必须要有以下几列,列名可以不一样,但顺序必须相同:

  • 列1. variants,使用rsID(例如“rs11966562”)

  • 列2. chromosome,染色体

  • 列3. position,snp的基因组位置

  • 列4. P-value

  • 列5. MAF,等位基因频率

  • 列6. beta,效应大小

  • 列7. se,标准误

示例使用的是内置的 GTEX 数据,可以使用以下代码查看其中可使用的组织来源 eqtl 数据:

xQTLbiolinks::tissueSiteDetailGTExv8$tissueSiteDetail %>% unique()

2.鉴定哨兵 snps

哨兵 SNP 可以通过使用 xQTLanalyze_getSentinelSnp 及其参数 p-value < 5e-8SNP-to-SNP distance > 10e6 bp来检测。如果提供的 GWAS 文件基因组版本是 GRCh37,推荐将其转换为 GRCh38(使用参数:genomeVersion="grch37)。

sentinelSnpDF <- xQTLanalyze_getSentinelSnp(gwasDF, pValueThreshold = 5e-08)
# 筛选过后的snp如下
sentinelSnpDF
#>          rsid  chr position   pValue    maf    beta      se
#> 1: rs13120565 chr4 10702513 5.66e-10 0.6429 0.01825 0.00294

3.确定 snps 相关性状基因

性状基因是指位于哨兵 SNPs 1Mb 范围内(默认值,可以通过参数detectRange更改)的基因,使用函数 xQTLanalyze_getTraits 搜索哨兵 SNPs 1Mb 范围内的每个基因。

traitsAll <- xQTLanalyze_getTraits(sentinelSnpDF, detectRange=1e6, tissueSiteDetail=tissueSiteDetail)
# 总共检测到3个特征基因与1个SNP之间的3个关联
traitsAll
#>          rsid  chr position   pValue    maf    beta      se       gencodeId
#> 1: rs13120565 chr4 10702513 5.66e-10 0.6429 0.01825 0.00294 ENSG00000002587
#> 2: rs13120565 chr4 10702513 5.66e-10 0.6429 0.01825 0.00294 ENSG00000109684
#> 3: rs13120565 chr4 10702513 5.66e-10 0.6429 0.01825 0.00294 ENSG00000261490

4.进行共定位分析

共定位方法中有四个统计假设

  • H0:表型1(GWAS)和 表型2 (*QTL)与某个基因组区域的所有SNP位点无显著相关

  • H1/H2:表型1(GWAS)或表型2(*QTL)与某个基因组区域的SNP位点显著相关

  • H3:表型1(GWAS)和 表型2 (*QTL)与某个基因组区域的SNP位点显著相关,但由不同的因果变异位点驱动

  • H4:表型1(GWAS)和 表型2 (*QTL)与某个基因组区域的SNP位点显著相关,且由同一个因果变异位点驱动

① 对于单个特征基因,例如上步骤中的 ENSG00000109684,可以使用coloc方法执行共定位分析:

output <- xQTLanalyze_coloc(gwasDF, "ENSG00000109684", tissueSiteDetail=tissueSiteDetail) # using gene symbol
# 输出是一个列表,包括两部分:coloc_Out_summary 和 gwasEqtlInfo
output$coloc_Out_summary
#>    nsnps    PP.H0.abf   PP.H1.abf    PP.H2.abf  PP.H3.abf PP.H4.abf
#> 1:  7107 7.097893e-11 1.32221e-07 3.890211e-06 0.00625302  0.993743
#>          traitGene candidate_snp SNP.PP.H4
#> 1: ENSG00000109684    rs13120565 0.5328849

② 对于多个特征基因,可以使用for循环或lapply函数来获取所有基因的输出(使用coloc和hyprcoloc方法)

outputs <- rbindlist(lapply( unique(traitsAll$gencodeId), function(x){ # using gencode ID.xQTLanalyze_coloc(gwasDF, x, tissueSiteDetail=tissueSiteDetail, method = "Both")$colocOut }))
# outputs是一个data.table,它合并了所有基因的 coloc_Out_summary 的所有结果
outputs
#>          traitGene nsnps    PP.H0.abf    PP.H1.abf    PP.H2.abf  PP.H3.abf
#> 1: ENSG00000002587  6452 1.730175e-05 3.218430e-02 6.603361e-05 0.12198838
#> 2: ENSG00000109684  7107 7.097893e-11 1.322210e-07 3.890211e-06 0.00625302
#> 3: ENSG00000261490  6601 5.287051e-05 9.848309e-02 4.801374e-04 0.89435622
#>     PP.H4.abf candidate_snp SNP.PP.H4 hypr_posterior hypr_regional_prob
#> 1: 0.84574398    rs13120565 0.4140146         0.5685             0.9694
#> 2: 0.99374296    rs13120565 0.5328849         0.9793             0.9999
#> 3: 0.00662768    rs13120565 0.4219650         0.0000             0.0101
#>    hypr_candidate_snp hypr_posterior_explainedBySnp
#> 1:         rs13120565                        0.2726
#> 2:         rs13120565                        0.4747
#> 3:         rs13120565                        0.4118

5. 结果可视化

对于潜在的因果基因ENSG00000109684(PP4=0.9937 & hypr_posterior=0.9999,数值越大越显著),我们可以获得其跨组织的显著关联:

xQTLvisual_eqtl("ENSG00000109684")

图片

为了可视化 p 值分布和比较 GWAS 和 eQTL 的信号,首先通过 rsid 合并 GWAS 和 eQTL 的变异

eqtlAsso <- xQTLdownload_eqtlAllAsso(gene="ENSG00000109684", tissueLabel = tissueSiteDetail, data_source = "liLab")
gwasEqtldata <- merge(gwasDF, eqtlAsso, by="rsid", suffixes = c(".gwas",".eqtl"))

函数 xQTLvisual_locusCompare 在右上角显示候选 SNP rs13120565:

xQTLvisual_locusCompare(gwasEqtldata[,.(rsid, pValue.eqtl)], gwasEqtldata[,.(rsid, pValue.gwas)], legend_position = "bottomright")
# 注意:SNP连锁不平衡信息会自动在线下载。由于网络问题,下载有时可能会失败。如果这种情况发生,请再次尝试运行。

图片

GWAS 信号的 Locuszoom 图

xQTLvisual_locusZoom(gwasEqtldata[,.(rsid, chrom, position, pValue.gwas)], legend=FALSE)

图片

eQTL 信号的 LocusZoom 图

xQTLvisual_locusZoom(gwasEqtldata[,.(rsid, chrom, position, pValue.eqtl)], highlightSnp = "rs13120565", legend=FALSE)

图片

eQTL(rs13120565-ENSG00000187323.11)标准化表达的小提琴图

xQTLvisual_eqtlExp("rs13120565", "ENSG00000109684", tissueSiteDetail = tissueSiteDetail)

图片

xQTLvisual_locusCombine结合locuscompare和locuszoom图

xQTLvisual_locusCombine(gwasEqtldata[,c("rsid","chrom", "position", "pValue.gwas", "pValue.eqtl")], highlightSnp="rs13120565")

图片

共定位位点应显示出一般模式,其中高 LD 的 SNPs 将显示出与共定位基因表达水平的强关联,而低 LD 的 SNPs 的 eQTL 关联将减弱。eQTL 的这种模式在不同组织/细胞类型中变化,其强度表明了变异的调节效应的力量。我们可以使用 xQTLvisual_coloc 可视化不同组织/细胞类型中 eQTL 的 p 值与 LD 之间的相关性,以轻松区分这种模式:

multi_tissue_coloc <- xQTLvisual_coloc(gene="ENSG00000109684", variantName="rs13120565", tissueLabels = c("Brain - Cerebellar Hemisphere", "Brain - Cerebellum", "Thyroid", "Lung","Cells - EBV-transformed lymphocytes"))

图片

速来速去 

图片

今天就分享到这

相关文章:

xQTLs 共定位分析(XQTLbiolinks包)

XQTL 共定位分析 XQTLbiolinks 是一个端到端的生物信息学工具&#xff0c;由深圳湾实验室李磊研究团队开发&#xff0c;用于高效地分析公共或用户定制的个xQTLs数据。该软件提供了一个通过与 xQTLs 共定位分析进行疾病靶基因发现的流程&#xff0c;以检测易感基因和致病变异。…...

网络工程(学习记录)

day1创建Vlan Switch>enable Switch#configure terminal Switch(config)#hostname SW1 修改名称为SW1 SW1(config)# SW1(config)#vlan 10 创建vlan10 SW1(config-vlan)#vlan 20 SW1(config)#interface f0/1 进入接口f0…...

全志A133 android10 适配EC20 4G模块

一&#xff0c;移植适配 1. 驱动移植 代码路径&#xff1a;longan/kernel/linux-4.9/drivers/usb/serial/option.c diff --git a/drivers/usb/serial/option.c b/drivers/usb/serial/option.c index 9f96dd2..2f25466 100644 --- a/drivers/usb/serial/option.cb/drivers/us…...

数据分析:Python语言网络图绘制

文章目录 介绍加载R包类别导入数据下载数据画图介绍 网络图是一种图形表示法,用于展示实体之间的关系。在不同的领域中,网络图有着不同的含义和用途:在生物学中,网络图可以用来表示生物分子之间的相互作用,如蛋白质相互作用网络。 加载R包 import pandas as pd import …...

使用ChatGPT引导批判性思维,提升论文的逻辑与说服力的全过程

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 批判性分析&#xff08;Critical Analysis&#xff09; 是论文写作中提升质量和说服力的重要工具。它不仅帮助作者深入理解和评价已有研究&#xff0c;还能指导作者在构建自己论点时更加…...

vue限定类型上传文件 最简单实践(单个可文件、可图片)

这个是为了文件导入弄的&#xff0c;内部运维人员使用的 目前还没做删除文件的交互 <el-uploadclass"upload-demo"ref"upload":before-upload"handleBeforeUpload"action"#"accept".xls,.xlsx":limit"1">&l…...

【GUI设计】基于图像分割和边缘算法的GUI系统(7),matlab实现

博主简介&#xff1a; 如需获取设计的完整源代码或者有matlab图像代码项目需求/合作&#xff0c;可联系主页个人简介提供的联系方式或者文末的二维码。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本次案例是基于图像分割和边缘算法的GUI系统…...

未来之窗VOS编程工具让你的工作效率翻倍———未来之窗行业应用跨平台架构

未来之窗编程工具概述 平板电脑/手机用于编程具有诸多优点。其便携性强&#xff0c;方便随时随地开展工作。触摸操作直观便捷&#xff0c;长续航能满足长时间需求&#xff0c;启动迅速。支持手写绘图&#xff0c;利于表达想法。能集成多种编程工具&#xff0c;还便于通过云服务…...

分布式数据库——HBase基本操作

启动HBase: 1.启动hadoop,进入hadoop的sbin中 cd /opt/hadoop/sbin/ 2.初始化namenode hdfs namenode -format 3.启动hdfs ./start-all.sh 4.启动hbase cd /opt/hbase/bin ./start-hbase.sh 5.使用jps查看进程 jps 以下图片则是hbase启动成功~ 运行HBase ./hbase sh…...

Go语言并发编程中的超时与取消机制解析

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 并发编程是Go语言的核心优势之一,而在实际应用中,超时和取消操作会频繁出现。超时机制能够帮助我们理解系统行为,防止系统因为某些任务执行过长而陷入困境。与此同时,取消操作则是应对超时的一种自然反应。此…...

Unity3D UIdocument如何改变层级详解

前言 在Unity3D中&#xff0c;UI文档的层级改变通常涉及UI元素的显示顺序&#xff0c;这是通过UGUI&#xff08;Unitys Graphical User Interface&#xff09;系统来实现的。以下是一篇关于如何在Unity3D中改变UI元素层级的详细解析&#xff0c;包括技术详解和代码实现。 对惹…...

Debian与Ubuntu:深入解读两大Linux发行版的历史与联系

Debian与Ubuntu&#xff1a;深入解读两大Linux发行版的历史与联系 引言 在开源操作系统的领域中&#xff0c;Debian和Ubuntu是两款备受瞩目的Linux发行版。它们不仅在技术上有着密切的联系&#xff0c;而且各自的发展历程和理念也对开源社区产生了深远的影响。本文将详细介绍…...

GPU服务器本地搭建Dify+xinference实现大模型应用

文章目录 前言一、显卡驱动配置1.检测显卡2.安装驱动 二、安装nvidia-docker二、安装Xinference1.拉取镜像2.运行Xinference3.模型部署 三、安装Dify1.下载源代码2.启动 Dify3.访问 Dify 四、Dify构建应用1.配置模型供应商2.聊天助手3.Agent 前言 本文使用的GPU服务器为UCloud…...

嵌入式程序设计经验 创建复位函数

在设计嵌入式系统重新时 需要考虑软复位的情况, 软复位时 很多变量都需要重置为初始值, 如果一个个去赋值 很麻烦, 下面是一个简单的办法 主要是对结构体 复位的方法: #include <stdint.h>typedef struct {uint8_t reg1;uint8_t reg2;uint8_t reg3; } StruSimuStat1…...

每天五分钟深度学习框架pytorch:交叉熵计算时的维度是什么?

本文重点 前面我们学习了pytorch中已经封装好的损失函数,已经封装好的损失函数有很多,但是我们并没有详细介绍,原因就是单独介绍损失函数可能难以理解,我们上一章节的目的是让大家先了解一下常见的损失函数,然后再之后的实际使用中遇到哪个损失函数,我们就使用哪个损失函…...

【Axure视频教程】跨页面控制中继器表格

今天教大家在Axure制作跨页面控制中继器表格的原型模板&#xff0c;我们可以在一个页面中通过交互&#xff0c;对另一个页面中的中继器进行控制&#xff0c;控制其显示的数据内容。那这个模板使用也很简单&#xff0c;复制粘贴按钮&#xff0c;在中继器表格里填写对应的数据&am…...

Android 利用OSMdroid开发GIS 添加 控件以及定位

部署看这个&#xff1a;Android 利用OSMdroid开发GIS-CSDN博客 添加控件&#xff0c;直接上源码 activity_main.xml&#xff1a; <?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/…...

前端vue-实现富文本组件

1.使用wangeditor富文本编辑器 工具网站&#xff1a;https://www.wangeditor.com/v4/ 下载安装命令&#xff1a;npm i wangeditor --save 成品如下图&#xff1a; 组件实现代码 <template><div><!-- 富文本编辑器 --><div id"wangeditor">…...

AUTOSAR汽车电子嵌入式编程精讲300篇-基于CAN总线的气动控制(中)

目录 2.2 CAN总线技术及TTCAN协议 2.2.1 CAN总线技术 2.2.2 TTCAN协议 3 气动系统的定位控制研究 3.1 滑模控制原理 3.1.1 滑模控制概念和特性 3.1.2 滑模控制的抖振问题 3.1.3 非奇异终端滑模控制 3.2 气动系统定位控制策略设计 3.2.1 跟踪微分器的设计…...

国内可用ChatGPT-4中文镜像网站整理汇总【持续更新】

一、GPT中文镜像网站 ① yixiaai.com 支持GPT4、4o以及o1&#xff0c;支持MJ绘画 ② chat.lify.vip 支持通用全模型&#xff0c;支持文件读取、插件、绘画、AIPPT ③ AI Chat 支持GPT3.5/4&#xff0c;4o以及MJ绘画 二、模型知识 o1/o1-mini&#xff1a;最新的版本模型&am…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...