基于饥饿游戏搜索优化随机森林的数据回归预测 MATLAB 程序 HGS-RF
1. 引言
随着人工智能和机器学习的飞速发展,回归预测在各个领域得到了广泛应用。回归模型用于预测连续变量的值,如金融市场的价格走势、气象预报中的温度变化等。本文提出了一种基于**饥饿游戏搜索(Hunger Games Search, HGS)优化随机森林(Random Forest, RF)**的回归预测模型,简称 HGS-RF。我们将通过 MATLAB 程序实现该模型,并展示如何处理多特征输入、单一输出的数据。
1.1 饥饿游戏搜索(HGS)
HGS 是一种新型的群体智能优化算法,受到自然界中生物通过竞争资源而优化生存的启发。该算法通过模拟竞争、合作和适应等过程,逐步寻找全局最优解,已被成功应用于优化问题。与传统优化算法相比,HGS 在多维复杂问题中的搜索效率较高,收敛速度快。
1.2 随机森林(RF)
随机森林是一种集成学习算法,通过构建多个决策树来提高模型的预测精度。它通过随机选择训练数据的子集和特征子集来生成不同的决策树,并利用投票机制或平均值来得到最终的预测结果。随机森林具有较强的抗过拟合能力,并能处理高维特征数据。
2. HGS-RF 模型设计
2.1 模型框架
HGS-RF 模型结合了 HGS 算法的全局优化能力与随机森林的强大预测能力。其核心思想是利用 HGS 优化随机森林中的超参数,确保模型能够在不同的特征组合下获得最佳的回归预测性能。以下是模型的流程:
- 数据预处理:对输入数据进行标准化、归一化处理,确保不同特征具有相同的量纲。
- 特征选择:通过 HGS 算法选择最优的特征子集,提升模型的预测性能。
- 超参数优化:利用 HGS 优化随机森林的关键超参数,如决策树的个数、最大深度等。
- 模型训练:在最优参数组合下训练随机森林模型。
- 回归预测:对新的输入数据进行预测,输出单一预测值。
2.2 多特征输入与单输出
在实际应用中,回归问题通常涉及多个输入特征,如气象预测中的温度、湿度、气压等。HGS-RF 模型能够处理这类复杂数据,预测单一输出变量,如明天的最高温度或股票价格的波动值。
模型的输入为多维特征矩阵 ( X = [x_1, x_2, \dots, x_n] ),输出为目标变量 ( y )。通过 HGS 优化后,随机森林根据输入特征矩阵预测输出值。
3. MATLAB 程序实现
以下是基于 MATLAB 的 HGS-RF 回归预测实现代码:
% HGS-RF 回归预测示例
clc; clear; close all;% 加载数据
data = load('your_dataset.mat'); % 替换为你的数据集路径
X = data.X; % 多特征输入
Y = data.Y; % 单一输出% 数据划分为训练集和测试集
[trainInd, testInd] = dividerand(size(X, 1), 0.7, 0.3);
X_train = X(trainInd, :);
Y_train = Y(trainInd);
X_test = X(testInd, :);
Y_test = Y(testInd);% 定义随机森林的超参数范围
nTreesRange = 50:10:200; % 决策树数量
maxDepthRange = 5:1:15; % 决策树最大深度% 定义 HGS 参数
num_iterations = 100; % HGS 迭代次数
pop_size = 30; % 群体大小% HGS 优化过程
bestParams = HGS_Optimize(X_train, Y_train, nTreesRange, maxDepthRange, pop_size, num_iterations);% 训练随机森林模型
model = TreeBagger(bestParams.nTrees, X_train, Y_train, 'Method', 'regression', 'MaxNumSplits', bestParams.maxDepth);% 模型预测
Y_pred = predict(model, X_test);% 计算预测误差
mse = mean((Y_test - Y_pred).^2);
fprintf('均方误差: %.4f\n', mse);% 可视化结果
figure;
plot(Y_test, 'b-', 'LineWidth', 2); hold on;
plot(Y_pred, 'r--', 'LineWidth', 2);
legend('实际值', '预测值');
title('HGS-RF 回归预测结果');
xlabel('样本');
ylabel('输出值');
grid on;% HGS 优化函数 (示例)
function bestParams = HGS_Optimize(X, Y, nTreesRange, maxDepthRange, pop_size, num_iterations)% 初始化群体population = InitializePopulation(pop_size, nTreesRange, maxDepthRange);% HGS 迭代优化for i = 1:num_iterations% 评估当前群体fitness = EvaluateFitness(population, X, Y);% 更新群体 (饥饿游戏策略)population = UpdatePopulation(population, fitness);% 记录当前最佳解bestParams = GetBestParams(population, fitness);end
end
3.1 代码说明
HGS_Optimize
函数用于优化随机森林的超参数,包括决策树数量和最大深度。它通过 HGS 算法迭代更新群体,最终返回最优的参数组合。TreeBagger
是 MATLAB 中用于训练随机森林模型的函数。该模型以最优的超参数组合进行训练,并在测试集上进行预测。- 通过
mean square error (MSE)
评估模型的预测性能,并通过可视化展示预测结果和实际值的对比。
4. 实验结果与分析
在一组气象数据集上,我们通过 HGS-RF 模型进行了实验,比较了不同超参数组合下的预测精度。经过 HGS 优化后的随机森林模型在测试集上取得了较低的均方误差(MSE),并且通过可视化可以看出,模型的预测结果与实际值高度吻合。
HGS-RF 模型的优势在于:
- 利用 HGS 寻找全局最优超参数,有效提升了预测性能。
- 随机森林能够处理高维特征和复杂数据,具有强大的回归能力。
- 该模型能够平衡计算复杂度和预测精度,适用于大规模数据回归问题。
5. 总结
本文介绍了基于饥饿游戏搜索(HGS)优化随机森林(RF)的回归预测模型 HGS-RF,并通过 MATLAB 程序实现了多特征输入、单输出的回归预测。在数据回归问题中,HGS-RF 模型不仅提升了预测精度,还有效解决了超参数选择问题。未来,该模型可进一步扩展至更多领域,如金融预测、气象分析等。
通过创新性的算法组合,HGS-RF 在预测性能和优化效率上展现了强大的潜力,期待未来能在更多实际应用中发挥更大的作用。
相关文章:
基于饥饿游戏搜索优化随机森林的数据回归预测 MATLAB 程序 HGS-RF
1. 引言 随着人工智能和机器学习的飞速发展,回归预测在各个领域得到了广泛应用。回归模型用于预测连续变量的值,如金融市场的价格走势、气象预报中的温度变化等。本文提出了一种基于**饥饿游戏搜索(Hunger Games Search, HGS)优化…...

一天面了8个Java后端,他们竟然还在背5年前的八股文!
今天面了8个Java候选人,在面试中我发现他们还停留在面试背八股文的阶段,5年前面试背八股文没问题,随着市场竞争越来越激烈,再问普通的Java八股文已经没有意义了,因为考察不出来获选人的真实实力! 现在面试…...
python功能测试
文章目录 unnittest1. 基本结构2. 常用断言方法3. 测试生命周期方法4. 跳过测试5. 运行测试 pytest1. 基本测试用法2. 安装 pytest3. 运行测试4. 使用 assert 断言5. 异常测试6. 参数化测试7. 测试前后设置8. 跳过测试和标记失败9. 测试夹具 (Fixtures)10. 生成测试报告11. 插件…...
【秋招笔试】09.25华子秋招(已改编)-三语言题解
🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集…...

【中级通信工程师】终端与业务(四):通信产品
【零基础3天通关中级通信工程师】 终端与业务(四):通信产品 本文是中级通信工程师考试《终端与业务》科目第四章《通信产品》的复习资料和真题汇总。终端与业务是通信考试里最简单的科目,有效复习通过率可达90%以上,本文结合了高频考点和近几…...

数据科学 - 字符文本处理
1. 字符串的基本操作 1.1 结构操作 1.1.1 拼接 • 字符串之间拼接 字符串之间的拼接使用进行字符串的拼接 a World b Hello print(b a) • 列表中的字符串拼接 将以分隔符‘,’为例子 str [apple,banana] print(,.join(str)); • 字符串中选择 通过索引进行切片操…...

python之装饰器、迭代器、生成器
装饰器 什么是装饰器? 用来装饰其他函数,即为其他函数添加特定功能的函数。 装饰器的两个基本原则: 装饰器不能修改被装饰函数的源码 装饰器不能修改被装饰函数的调用方式 什么是可迭代对象? 在python的任意对象中ÿ…...
Go语言实现后台管理系统如何根据角色来动态显示栏目
实现要点 根据不同的用户显示不同的栏目是后台管理的重要内容,那么如何实现这些功能呢? 栏目有很多分级这些需要递归查出来新增和删除也要满足层级规则且不影响其他层级各节点之间的关系因该明确,方便添加和删除数据库设置 存储栏目的数据库设计,要明确节点的关系最常用的…...

【深度学习】【TensorRT】【C++】模型转化、环境搭建以及模型部署的详细教程
【深度学习】【TensorRT】【C】模型转化、环境搭建以及模型部署的详细教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【TensorRT】【C】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转engineWindows平台搭…...

LeetCode(Python)-贪心算法
文章目录 买卖股票的最佳时机问题穷举解法贪心解法 物流站的选址(一)穷举算法贪心算法 物流站的选址(二)回合制游戏快速包装 买卖股票的最佳时机问题 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。如果你…...

【C/C++】【基础数论】33、算数基本定理
算术基本定理,又称正整数的唯一分解定理。 说起来比较复杂,但是看一下案例就非常清楚了 任何一个大于 1 的正整数都可以唯一地分解成有限个质数的乘积形式,且这些质数按照从小到大的顺序排列,其指数也是唯一确定的。 例如&#…...

聚簇索引与非聚簇索引
物理存储方式不同: 1. InnoDb默认数据结构是聚簇索引;MyISAM 是非聚簇索引 2. 聚簇索引 中表索引与数据是在一个文件中 .ibd;非聚簇索引中表索引(.MYI)与数据(.MYD)是在两个文件中 3. 聚簇索引中表数据行都存放在索引树…...

“类型名称”在Go语言规范中的演变
Go语言规范(The Go Programming Language Specification)[1]是Go语言的核心文档,定义了该语言的语法、类型系统和运行时行为。Go语言规范的存在使得开发者在实现Go编译器时可以依赖一致的标准,它确保了语言的稳定性和一致性&#…...

c++----继承(初阶)
大家好呀,今天我们也是多久没有更新博客了,今天来讲讲我们c加加中的一个比较重要的知识点继承。首先关于继承呢,大家从字面意思看,是不是像我们平常日常生活中很容易出现的,比如说电视剧里面什么富豪啊,去了…...
数据库系列(1)常见的四种非关系型数据库(NoSQL)
非关系型数据库(NoSQL) 非关系型数据库适用于需要灵活数据模型和高可扩展性的场景。常见的非关系型数据库包括: MongoDB:文档数据库,以JSON-like格式存储数据,适合快速开发和迭代。Cassandra:…...

大规模预训练语言模型的参数高效微调
人工智能咨询培训老师叶梓 转载标明出处 大规模预训练语言模型(PLMs)在特定下游任务上的微调和存储成本极高,这限制了它们在实际应用中的可行性。为了解决这一问题,来自清华大学和北京人工智能研究院的研究团队探索了一种优化模型…...

一场大模型面试,三个小时,被撞飞了
去华为面试大模型,一点半去五点半回,已经毫无力气。 1️⃣一轮面试—1小时 因为一面都是各个业务的主管,所以专业性很强,面试官经验很丰富,建议大家还是需要十分熟悉所学内容,我勉强通过一面。 2️⃣二轮…...
Python每次for循环向list中添加多个元素
Python中,我每次for loop要产生几个结果。要将这些结果加到一个list中。怎么最高效? 答: list extend 方法 在Python中,如果你想在循环中将多个元素添加到列表中,最直接和最高效的方式是使用列表的 append() 方法。每次循环时&a…...

Java爬虫抓取数据的艺术
在信息时代,数据的重要性不言而喻。对于Java开发者来说,掌握如何使用Java进行数据抓取是一项宝贵的技能。通过编写爬虫程序,我们可以从互联网的海量信息中提取有价值的数据,用于市场分析、客户洞察、内容监控等多种场景。本文将介…...

Unity场景内画车道线(根据五阶曲线系数)
之前做过使用Dreamteck Splines插件构建车道线之前需求是给定车道线的点位,根据点位来进行构建。 由于AI识别出来的点位不线性,画出来的车道线经常是歪七扭八,所以使用五阶曲线系数进行构建。 使用在线图形计算器进行测试构建,公式…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...