算法打卡:第十一章 图论part08
今日收获:拓扑排序,dijkstra算法
算法讲解部分均来源于代码随想录
1. 拓扑排序
基础知识:
(1)应用场景:给出有向图,将有向图转换为线性的排序就叫拓扑排序(如果图中有环则存在循环依赖,不能做线性排序,所以拓扑排序也可以用来判断有向图中是否有环)
(2)解法:卡恩算法(BFS广度优先搜索)
(3)步骤:
- 找到入度为0的点加入结果集
- 将该节点从图中移除
(4)图中有环:此时找不到入度为0的点,所以结果集的长度小于节点个数
题目链接:117. 软件构建 (kamacoder.com)
方法:
import java.util.*;public class Main{public static void main(String[] args){Scanner sc=new Scanner(System.in);int N=sc.nextInt();int M=sc.nextInt();// 记录节点的入度int[] inDegree=new int[N];// 记录依赖关系List<List<Integer>> edges=new ArrayList<>(N);for (int i=0;i<N;i++){edges.add(new ArrayList<>());}// 接收依赖关系for (int i=0;i<M;i++){int s=sc.nextInt();int t=sc.nextInt();edges.get(s).add(t); // 依赖于s的边inDegree[t]++;}// 队列存储入度为0的节点Queue<Integer> queue=new LinkedList<>();for (int i=0;i<N;i++){if (inDegree[i]==0){queue.offer(i);}}// 存储结果List<Integer> result=new ArrayList<>();while (!queue.isEmpty()){int cur=queue.poll();result.add(cur);// 将相连节点的入度减一for (int edge:edges.get(cur)){inDegree[edge]--;if (inDegree[edge]==0){queue.offer(edge);}}}// 判断是否存在环if (result.size()==N){for (int i=0;i<result.size()-1;i++){System.out.print(result.get(i)+" ");}System.out.print(result.get(N-1));}else {System.out.println(-1);}}
}
2. dijkstra算法
基础知识:
(1)求最短路径问题:给出有向图,求起点到终点的最短路径。
(2)dijkstra算法:有向图中边的权值均为非负数;可以求起点到其他节点的最短路径算法
(3)dijkstra三部曲:minDist数组用来记录每一个节点距离源点的最小距离。
- 第一步,选源点到哪个节点近且该节点未被访问过
- 第二步,该最近节点被标记访问过
- 第三步,更新非访问节点到源点的距离(即更新minDist数组)
(4)如果需要打印边,和prim算法一样,在更新minDist数组时记录父节点
(5)和prim算法的区别:
- prim是求非访问节点到最小生成树的最小距离
- dijkstra是求非访问节点到源点的最小距离,源点是固定的
(6)要求非负权值是因为,此算法后续节点距离源节点的距离=前面节点到源节点的距离+本边的权值,后面的节点一定要比前面已加入路径中的节点成本大
题目链接:47. 参加科学大会(第六期模拟笔试) (kamacoder.com)
方法:
import java.util.*;public class Main{public static void main(String[] args){Scanner sc=new Scanner(System.in);int N=sc.nextInt();int M=sc.nextInt();boolean[] visited=new boolean[N+1]; // 记录是否访问int[][] grid=new int[N+1][N+1]; // 记录所有的边,初始化为不可达for(int i=0;i<N+1;i++){Arrays.fill(grid[i],Integer.MAX_VALUE);}for (int i=0;i<M;i++){int s=sc.nextInt();int e=sc.nextInt();int v=sc.nextInt();grid[s][e]=v;}int[] minDist=new int[N+1]; // 其他点到源点的最小距离for (int i=0;i<N+1;i++){minDist[i]=Integer.MAX_VALUE;}minDist[1]=0;// 求到原点的最小距离for (int i=1;i<N+1;i++){int cur=-1;int minD=Integer.MAX_VALUE;// 选择最小节点for (int j=1;j<N+1;j++){if (minDist[j]<minD&&!visited[j]){cur=j;minD=minDist[j];}}if (cur==-1){break;}// 标记访问visited[cur]=true;// 更新其他节点for (int j=1;j<N+1;j++){if (minDist[cur]+grid[cur][j]<minDist[j]&&!visited[j]&&grid[cur][j]!=Integer.MAX_VALUE){minDist[j]=minDist[cur]+grid[cur][j];}}}if (minDist[N]==Integer.MAX_VALUE){System.out.println(-1);}else {System.out.println(minDist[N]);}}
}相关文章:
算法打卡:第十一章 图论part08
今日收获:拓扑排序,dijkstra算法 算法讲解部分均来源于代码随想录 1. 拓扑排序 基础知识: (1)应用场景:给出有向图,将有向图转换为线性的排序就叫拓扑排序(如果图中有环则存在循…...
2024年Gartner主存储平台魔力象限报告 | 华为从领导者象限滑落到挑战者象限
魔力象限报告对比 本周Gartner发布了2024年主存储平台魔力象限报告,主存储用户正在采用平台原生服务功能来实现混合 IT 运营。I&O 领导者应利用这项研究来为任务关键型应用程序规划和执行现代且有弹性的存储基础设施平台。 本次报告中共有10家厂商入选…...
[Python学习日记-31] Python 中的函数(上)
[Python学习日记-31] Python 中的函数(上) 简介 语法定义 函数的参数 简介 引子: 你是某公司的一个高级程序员,现在老板让你写一个监控程序,需要24小时全年无休的监控公司网站服务器的系统状况,当 CPU、…...
工作笔记【四】
对于这种,样式一样,但是图片和字体颜色不一样,动态渲染。 代码: <template><view class"page"><view class"rows" v-for"item in data"><view class"v0"><v…...
ArcEngine C#二次开发图层处理:根据属性分割图层(Split)
需求:仅根据某一属性,分割图层,并以属性值命名图层名称保存。 众所周知,ArcGIS ArcToolbox中通过Split可以实现图形分割一个图层,以属性值命名图层,如下图所示。 本文仅仅依据属性值,将一个shp…...
【二叉平衡搜索树】Treap
前置 本篇是平衡树-treap的补充学习笔记。 Treap - 树堆 学习基础:适合一定基础的:比如,实现了经典二叉搜索树(常用的几个函数写过), 和二叉堆(数组的上浮下沉会写吗?)&a…...
Spring Boot 应用Kafka讲解和案例示范
Kafka 是一款高吞吐量、低延迟的分布式消息系统。本文将详细介绍如何在 Spring Boot 项目中使用 Kafka 进行消息接收与消费,并结合幂等和重试机制,确保消息消费的可靠性和系统的扩展性。我们将以电商交易系统为案例进行深入解析。 1. 系统架构概览 在电…...
以到手价为核心的品牌电商价格监测
在当今竞争激烈的电商时代,品牌的价格监测至关重要。传统的页面价监测已无法满足品牌对渠道管控的需求,而到手价监测则成为品牌控价的关键所在。 力维网络,作为深耕数据监测服务多年的专业机构,拥有自主开发的数据监测系统&#…...
Android中使用RecyclerView制作横向轮播列表及索引点
在Android开发中,RecyclerView是一个非常强大的组件,用于展示列表数据。它不仅支持垂直滚动,还能通过配置不同的LayoutManager实现横向滚动,非常适合用于制作轮播图或横向列表。本文将详细介绍如何使用RecyclerView在Android应用中…...
Llama 3.1 技术研究报告-2
3.3 基础设施、扩展性和效率 我们描述了⽀持Llama 3 405B⼤规模预训练的硬件和基础设施,并讨论了⼏项优化措施,这些措施提⾼了训练效率。 3.3.1 训练基础设施 Llama 1和2模型在Meta的AI研究超级集群(Lee和Sengupta,2022&#x…...
【深度学习】05-RNN循环神经网络-02- RNN循环神经网络的发展历史与演化趋势/LSTM/GRU/Transformer
RNN网络的发展历史与演化趋势 RNN(Recurrent Neural Network,循环神经网络)是一类用于处理序列数据的神经网络,特别擅长捕捉数据的时间或上下文依赖性。在其发展的过程中,不断出现各种改进和变体,以解决不…...
C++学习9.27
1、顺序表、栈、队列都更改成模板类 (1)顺序表 #include <iostream> #include <cstring>using namespace std;template <typename T1,typename T2,typename T3> class My_string { private:T1 *ptr; //指向字符数组的指针T2…...
【STM32开发环境搭建】-1-Keil(MDK) 5.27软件安装和注册教程
目录 1 安装前装备工作 2 安装KEIL(MDK-ARM) 5.27软件 3 注册KEIL(MDK-ARM) 5.27软件,获取License许可证 4 手动安装STM32F0,STM32F1,STM32F4,STM32F7,STM32H7的支持包 4.1 下载STM32的支持包 4.2 安装STM32的支…...
武汉正向科技格雷母线公司,无人天车系统,采用格雷母线定位技术
正向科技-格雷母线高精确定位技术-实操视频 高精度格雷母线内胆采用刚性内胆,基板采用精密度数控加工工艺,穿线卡采用高精度模具制作,不采用泡沫板填充,提高了地址检测精度和线性度。 最新一代的格雷母线定位技术特点是全数字化检…...
【保姆级教程】批量下载Pexels视频Python脚本(以HumanVid数据集为例)
目录 方案一:转换链接为download模式 方案二:获取源链接后下载 附录:HumanVid链接 方案一:转换链接为download模式 将下载链接的后缀加入 /download 然后用下面的脚本下载: import argparse import json import o…...
Python画笔案例-067 绘制配乐七角星
1、绘制橙子 通过 python 的turtle 库绘制 配乐七角星,如下图: 2、实现代码 绘制 配乐七角星 ,以下为实现代码: """配乐七角星.py本程序需要coloradd模块支持,安装方法:pip install coloradd""" import turtle from coloradd import color…...
Spark Job 对象 详解
在 Apache Spark 中,Job 对象是执行逻辑的核心组件之一,它代表了对一系列数据操作(如 transformations 和 actions)的提交。理解 Job 的本质和它在 Spark 中的运行机制,有助于深入理解 Spark 的任务调度、执行模型和容…...
C#中NModbus4中常用的方法
NModbus4 是一个用于 Modbus 协议通信的 C# 库,它支持串行 ASCII、RTU、TCP 和 UDP 协议。以下是 NModbus4 中常用的一些方法: 创建连接: ModbusSerialMaster.CreateRtu(SerialPort serialPort): 创建一个 RTU 串行连接。ModbusSerialMaster.…...
【Linux】线程同步与互斥
一、线程间互斥 1 .进程线程间的互斥相关概念 临界资源:多线程执行流共享的资源就叫做临界资源 临界区:每个线程内部,访问临界资源的代码,就叫做临界区 互斥:任何时刻,互斥保证有且只有一个执行流进入临界…...
003、网关路由问题
1. nginx配置404跳转回默认路由 https://blog.csdn.net/masteryee/article/details/83689954 https://blog.csdn.net/IbcVue/article/details/133230460 https://www.jb51.net/server/317970ynk.htm https://blog.csdn.net/u014438244/article/details/120531287 https://blog…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
鸿蒙Navigation路由导航-基本使用介绍
1. Navigation介绍 Navigation组件是路由导航的根视图容器,一般作为Page页面的根容器使用,其内部默认包含了标题栏、内容区和工具栏,其中内容区默认首页显示导航内容(Navigation的子组件)或非首页显示(Nav…...
__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.
这个警告表明您在使用Vue的esm-bundler构建版本时,未明确定义编译时特性标志。以下是详细解释和解决方案: 问题原因: 该标志是Vue 3.4引入的编译时特性标志,用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...
