当前位置: 首页 > news >正文

JUC之阻塞队列解读(BlockingQueue)

目录

BlockingQueue 简介

BlockingQueue 核心方法 

 1.放入数据

2.获取数据

入门代码案例

常见的 BlockingQueue

ArrayBlockingQueue(常用)

LinkedBlockingQueue(常用) 

PriorityBlockingQueue

SynchronousQueue

LinkedTransferQueue

LinkedBlockingDeque

小结 


BlockingQueue 简介

Concurrent 包中,BlockingQueue 很好的解决了多线程中,如何高效安全 “传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建 高质量的多线程程序带来极大的便利。本文详细介绍了 BlockingQueue 家庭中的所有成员,包括他们各自的功能以及常见使用场景。

阻塞队列,顾名思义,首先它是一个队列, 通过一个共享的队列,可以使得数据 由队列的一端输入,从另外一端输出;

当队列是空的,从队列中获取元素的操作将会被阻塞

当队列是满的,从队列中添加元素的操作将会被阻塞

试图从空的队列中获取元素的线程将会被阻塞,直到其他线程往空的队列插入新的元素

试图向已满的队列中添加新元素的线程将会被阻塞,直到其他线程从队列中移除一个或多 个元素或者完全清空,使队列变得空闲起来并后续新增  

常用的队列主要有以下两种:

• 先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。 从某种程度上来说这种队列也体现了一种公平性

• 后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发 生的事件(栈)

 在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起 的线程又会自动被唤起

为什么需要 BlockingQueue 好处是我们不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切 BlockingQueue 都给你一手包办了

在 concurrent 包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细 节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。

多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和 “消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。假设我 们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准 备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地 解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一 发生数据处理速度不匹配的情况呢?

理想情况下,如果生产者产出数据的速度 大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么 生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的 数据处理完毕,反之亦然。

• 当队列中没有数据的情况下,消费者端的所有线程都会被自动阻塞(挂起), 直到有数据放入队列

• 当队列中填满数据的情况下,生产者端的所有线程都会被自动阻塞(挂起), 直到队列中有空的位置,线程被自动唤醒

BlockingQueue 核心方法 

 1.放入数据

 • offer(anObject):表示如果可能的话,将 anObject 加到 BlockingQueue 里,即 如果 BlockingQueue 可以容纳,则返回 true,否则返回 false.(本方法不阻塞当 前执行方法的线程)

• offer(E o, long timeout, TimeUnit unit):可以设定等待的时间,如果在指定 的时间内,还不能往队列中加入 BlockingQueue,则返回失败

• put(anObject):把 anObject 加到 BlockingQueue 里,如果 BlockQueue 没有空间,则调用此方法的线程被阻断直到 BlockingQueue 里面有空间再继续.

2.获取数据

• poll(time): 取走 BlockingQueue 里排在首位的对象,若不能立即取出,则可以等 time 参数规定的时间,取不到时返回 null

• poll(long timeout, TimeUnit unit):从 BlockingQueue 取出一个队首的对象, 如果在指定时间内,队列一旦有数据可取,则立即返回队列中的数据。否则知 道时间超时还没有数据可取,返回失败。

• take(): 取走 BlockingQueue 里排在首位的对象,若 BlockingQueue 为空,阻断 进入等待状态直到 BlockingQueue 有新的数据被加入;

• drainTo(): 一次性从 BlockingQueue 获取所有可用的数据对象(还可以指定 获取数据的个数),通过该方法,可以提升获取数据效率;不需要多次分批加 锁或释放锁。

入门代码案例

public class Demo3{public static void main(String[] args) {BlockingQueue<String> blockingDeque=new ArrayBlockingQueue<>(3);blockingDeque.add("a");blockingDeque.add("a");blockingDeque.add("a");blockingDeque.add("a");}
}

Exception in thread "main" java.lang.IllegalStateException: Queue full

/*** 阻塞队列 */public class BlockingQueueDemo {public static void main(String[] args) throws InterruptedException {// List list = new ArrayList();BlockingQueue<String> blockingQueue = new ArrayBlockingQueue<>(3);//第一组
// System.out.println(blockingQueue.add("a")); // System.out.println(blockingQueue.add("b")); // System.out.println(blockingQueue.add("c")); // System.out.println(blockingQueue.element()); //System.out.println(blockingQueue.add("x")); // System.out.println(blockingQueue.remove()); // System.out.println(blockingQueue.remove()); // System.out.println(blockingQueue.remove()); // System.out.println(blockingQueue.remove()); // 第二组 // System.out.println(blockingQueue.offer("a")); // System.out.println(blockingQueue.offer("b")); // System.out.println(blockingQueue.offer("c")); // System.out.println(blockingQueue.offer("x")); // System.out.println(blockingQueue.poll()); // System.out.println(blockingQueue.poll()); // System.out.println(blockingQueue.poll()); // System.out.println(blockingQueue.poll()); // 第三组 
// blockingQueue.put("a"); // blockingQueue.put("b"); // blockingQueue.put("c"); // //blockingQueue.put("x"); // System.out.println(blockingQueue.take()); // System.out.println(blockingQueue.take()); // System.out.println(blockingQueue.take()); // System.out.println(blockingQueue.take());// 第四组System.out.println(blockingQueue.offer("a"));System.out.println(blockingQueue.offer("b"));System.out.println(blockingQueue.offer("c"));System.out.println(blockingQueue.offer("a",3L, TimeUnit.SECONDS));}
} 

常见的 BlockingQueue

ArrayBlockingQueue(常用)

基于数组的阻塞队列实现,在 ArrayBlockingQueue 内部,维护了一个定长数 组,以便缓存队列中的数据对象,这是一个常用的阻塞队列,除了一个定长数 组外,ArrayBlockingQueue 内部还保存着两个整形变量,分别标识着队列的 头部和尾部在数组中的位置。

ArrayBlockingQueue 在生产者放入数据和消费者获取数据,都是共用同一个 锁对象,由此也意味着两者无法真正并行运行,这点尤其不同于 LinkedBlockingQueue;按照实现原理来分析,ArrayBlockingQueue 完全可 以采用分离锁,从而实现生产者和消费者操作的完全并行运行。Doug Lea 之 所以没这样去做,也许是因为 ArrayBlockingQueue 的数据写入和获取操作已 经足够轻巧,以至于引入独立的锁机制,除了给代码带来额外的复杂性外,其 在性能上完全占不到任何便宜。 ArrayBlockingQueue 和 LinkedBlockingQueue 间还有一个明显的不同之处在于,前者在插入或删除 元素时不会产生或销毁任何额外的对象实例,而后者则会生成一个额外的 Node 对象。这在长时间内需要高效并发地处理大批量数据的系统中,其对于 GC 的影响还是存在一定的区别。而在创建 ArrayBlockingQueue 时,我们还 可以控制对象的内部锁是否采用公平锁,默认采用非公平锁。

一句话总结: 由数组结构组成的有界阻塞队列。

LinkedBlockingQueue(常用) 

基于链表的阻塞队列,同 ArrayListBlockingQueue 类似,其内部也维持着一 个数据缓冲队列(该队列由一个链表构成),当生产者往队列中放入一个数据 时,队列会从生产者手中获取数据,并缓存在队列内部,而生产者立即返回; 只有当队列缓冲区达到最大值缓存容量时(LinkedBlockingQueue 可以通过 构造函数指定该值),才会阻塞生产者队列,直到消费者从队列中消费掉一份数据,生产者线程会被唤醒,反之对于消费者这端的处理也基于同样的原理。 而 LinkedBlockingQueue 之所以能够高效的处理并发数据,还因为其对于生 产者端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发 的情况下生产者和消费者可以并行地操作队列中的数据,以此来提高整个队列 的并发性能。

ArrayBlockingQueue 和 LinkedBlockingQueue 是两个最普通也是最常用 的阻塞队列,一般情况下,在处理多线程间的生产者消费者问题,使用这两个 类足以。

一句话总结: 由链表结构组成的有界(但大小默认值为 integer.MAX_VALUE)阻塞队列。

 

PriorityBlockingQueue

基于优先级的阻塞队列(优先级的判断通过构造函数传入的 Compator 对象来 决定),但需要注意的是 PriorityBlockingQueue 并不会阻塞数据生产者,而 只会在没有可消费的数据时,阻塞数据的消费者。 因此使用的时候要特别注意,生产者生产数据的速度绝对不能快于消费者消费 数据的速度,否则时间一长,会最终耗尽所有的可用堆内存空间。 在实现 PriorityBlockingQueue 时,内部控制线程同步的锁采用的是公平锁。

一句话总结: 支持优先级排序的无界阻塞队列。

SynchronousQueue

一种无缓冲的等待队列,类似于无中介的直接交易,有点像原始社会中的生产 者和消费者,生产者拿着产品去集市销售给产品的最终消费者,而消费者必须 亲自去集市找到所要商品的直接生产者,如果一方没有找到合适的目标,那么 对不起,大家都在集市等待。相对于有缓冲的 BlockingQueue 来说,少了一 个中间经销商的环节(缓冲区),如果有经销商,生产者直接把产品批发给经 销商,而无需在意经销商最终会将这些产品卖给那些消费者,由于经销商可以 库存一部分商品,因此相对于直接交易模式,总体来说采用中间经销商的模式 会吞吐量高一些(可以批量买卖);但另一方面,又因为经销商的引入,使得 产品从生产者到消费者中间增加了额外的交易环节,单个产品的及时响应性能 可能会降低。

声明一个 SynchronousQueue 有两种不同的方式,它们之间有着不太一样的 行为。

公平模式和非公平模式的区别:

• 公平模式:SynchronousQueue 会采用公平锁,并配合一个 FIFO 队列来阻塞 多余的生产者和消费者,从而体系整体的公平策略;

• 非公平模式(SynchronousQueue 默认):SynchronousQueue 采用非公平 锁,同时配合一个 LIFO 队列来管理多余的生产者和消费者,而后一种模式, 如果生产者和消费者的处理速度有差距,则很容易出现饥渴的情况,即可能有 某些生产者或者是消费者的数据永远都得不到处理。 ==一句话总结: 不存储元素的阻塞队列,也即单个元素的队列。

LinkedTransferQueue

LinkedTransferQueue 是一个由链表结构组成的无界阻塞 TransferQueue 队 列。相对于其他阻塞队列,LinkedTransferQueue 多了 tryTransfer 和 transfer 方法。 LinkedTransferQueue 采用一种预占模式。意思就是消费者线程取元素时,如 果队列不为空,则直接取走数据,若队列为空,那就生成一个节点(节点元素 为 null)入队,然后消费者线程被等待在这个节点上,后面生产者线程入队时 发现有一个元素为 null 的节点,生产者线程就不入队了,直接就将元素填充到该节点,并唤醒该节点等待的线程,被唤醒的消费者线程取走元素,从调用的 方法返回。

一句话总结: 由链表组成的无界阻塞队列。

LinkedBlockingDeque

LinkedBlockingDeque 是一个由链表结构组成的双向阻塞队列,即可以从队 列的两端插入和移除元素。 对于一些指定的操作,在插入或者获取队列元素时如果队列状态不允许该操作 可能会阻塞住该线程直到队列状态变更为允许操作,这里的阻塞一般有两种情 况

• 插入元素时: 如果当前队列已满将会进入阻塞状态,一直等到队列有空的位置时 再讲该元素插入,该操作可以通过设置超时参数,超时后返回 false 表示操作 失败,也可以不设置超时参数一直阻塞,中断后抛出 InterruptedException 异 常

• 读取元素时: 如果当前队列为空会阻塞住直到队列不为空然后返回元素,同样可 以通过设置超时参数

一句话总结: 由链表组成的双向阻塞队列

小结 

1. 在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件 满足,被挂起的线程又会自动被唤起

2. 为什么需要 BlockingQueue? 在 concurrent 包发布以前,在多线程环境下, 我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全, 而这会给我们的程序带来不小的复杂度。使用后我们不需要关心什么时候需要 阻塞线程,什么时候需要唤醒线程,因为这一切 BlockingQueue 都给你一手 包办了

相关文章:

JUC之阻塞队列解读(BlockingQueue)

目录 BlockingQueue 简介 BlockingQueue 核心方法 1.放入数据 2.获取数据 入门代码案例 常见的 BlockingQueue ArrayBlockingQueue(常用) LinkedBlockingQueue(常用) PriorityBlockingQueue SynchronousQueue LinkedTransferQueue LinkedBlockingDeque 小结 Bloc…...

LCHub:ChatGPT4和低代码来临,程序员面临下岗?

一个网友吐槽道: “ 建站出来了,你们说程序员会失业。 低代码出来了,你们说程序员会失业。 Copilot出来了,你们说程序员会失业。 Chatgpt出来了,你们说程序员会失业 虽然这只是网友的吐槽,但却引起了小编的好奇。为何程序员那么容易被新技术取代?今天小编打算跟大家…...

【Node.js】Express框架的基本使用

✍️ 作者简介: 前端新手学习中。 &#x1f482; 作者主页: 作者主页查看更多前端教学 &#x1f393; 专栏分享&#xff1a;css重难点教学 Node.js教学 从头开始学习 目录 初识Express Express简介 什么是Express 进一步理解 Express Express能做什么 Express的基本使用 …...

使用docker 和 kubnernetes 部署单节点/多节点 kafka 环境

参考资料 https://kafka.apachecn.org/documentation.html#configuration kafka的broker有三个核心配置 broker.idlog.dirszookeeper.connect docker启动单节点kafka环境 启动zookeeper 可配置的环境变量&#xff0c;https://gallery.ecr.aws/bitnami/zookeeper $ docker …...

Linux使用:环境变量指南和CPU和GPU利用情况查看

Linux使用&#xff1a;环境变量指南和CPU和GPU利用情况查看Linux环境变量初始化与对应文件的生效顺序Linux的变量种类设置环境变量直接运行export命令定义变量修改系统环境变量修改用户环境变量修改环境变量配置文件环境配置文件的区别profile、 bashrc、.bash_profile、 .bash…...

深入浅出 SSL/CA 证书及其相关证书文件(pem、crt、cer、key、csr)

互联网是虚拟的&#xff0c;通过互联网我们无法正确获取对方真实身份。数字证书是网络世界中的身份证&#xff0c;数字证书为实现双方安全通信提供了电子认证。数字证书中含有密钥对所有者的识别信息&#xff0c;通过验证识别信息的真伪实现对证书持有者身份的认证。数字证书可…...

Compose(1/N) - 概念 基本使用

一、概念 1.1 解决的问题 APP展示的数据绝大多数不是静态数据而是会实时更新&#xff0c;传统的命令式UI写法更新界面繁琐且容易同步错误。1.2 Compose优势 由一个个可组合的Composable函数&#xff08;可看作是一个Layout布局&#xff09;拼成界面&#xff0c;方便维护和复用…...

2023高质量Java面试题集锦:高级Java工程师面试八股汇总

人人都想进大厂&#xff0c;当然我也不例外。早在春招的时候我就有向某某某大厂投岗了不少简历&#xff0c;可惜了&#xff0c;疫情期间都是远程面试&#xff0c;加上那时自身也有问题&#xff0c;导致屡投屡败。突然也意识到自己肚子里没啥货&#xff0c;问个啥都是卡卡卡卡&a…...

MySQL多表查询 子查询效率(DQL语句)

多表关系 项目开发中&#xff0c;在进行数据库表结构设计时&#xff0c;会根据业务需求及业务模块之间的关系&#xff0c;分析并设计表结构&#xff0c;由于业务之间相互关联&#xff0c;所以各个表结构之间也存在着各种联系&#xff0c;基本上分为三种&#xff1a; 一对多(多…...

Linux中 ps命令详解

一、基础概念 指令&#xff1a; ps 作用&#xff1a;查看系统进程&#xff0c;比如正在运行的进程有哪些&#xff0c;什么时候开始运行的&#xff0c;哪个用户运行的&#xff0c;占用了多少资源。 参数&#xff1a; -e 显示所有进程-f 显示所有字段&#xff08;UID&…...

【Python语言基础】——Python 关键字

Python语言基础——Python 关键字 文章目录Python语言基础——Python 关键字一、Python 关键字一、Python 关键字 Python 有一组关键字&#xff0c;这些关键字是保留字&#xff0c;不能用作变量名、函数名或任何其他标识符&#xff1a; 关键字 描述 and 逻辑运算符。 as 创建别…...

Java SE 基础(8)关键字和保留字

关键字 定义&#xff1a;被Java 语言赋予了特殊含义&#xff0c;用做专门用途的字符串&#xff08;单词&#xff09; 特点&#xff1a; 关键字中所有字母都为小写 用于定义数据类型的关键字 class、interface、 enum 、byte 、short、 int 、long、 float、 double、 char 、…...

Thinkphp 6.0响应输出和重定向

本节课我们来学习一下响应操作&#xff0c;响应输出和重定向。 一&#xff0e;响应操作 1. 响应输出&#xff0c;有好几种&#xff1a;包括 return、json()和 view()等等&#xff1b; 2. 默认输出方式是以 html 格式输出&#xff0c;如果你发起 json 请求&#xff0c;则输出 js…...

Centos html 中文 显示为乱码

0 &#xff1a; CentOS发布静态网页 之 httpd开启 https://blog.csdn.net/weixin_39689870/article/details/118146160 #yum install -y httpd #systemctl start httpd.service/etc/httpd/conf&#xff1a;该目录存放Apache服务器的配置文件 /var/www/html&#xff1a;该目录是…...

Helm学习笔记

文章目录概念定义helm组件helm的工作流程helm安装helm仓库helm部署应用helm应用的更新或回退或卸载概念 定义 学习helm首先得了解helm是什么&#xff0c;我们先来看一下helm的定义&#xff1a;helm是将kubernetes的各种资源对象打包&#xff0c;类似于Linux中的yum工具&#…...

深入学习JavaScript系列(二)——作用域和作用域链

本篇为第二篇&#xff0c;本系列文章会在后续学习后持续更新。 第一篇&#xff1a;#深入学习JavaScript系列&#xff08;一&#xff09;—— ES6中的JS执行上下文 第二篇&#xff1a;# 深入学习JavaScript系列&#xff08;二&#xff09;——作用域和作用域链 第三篇&#x…...

【计算机视觉 | 目标检测】DETR风格的目标检测框架解读

文章目录一、前言二、理解2.1 DETR的理解2.2 DETR的细致理解2.2.1 Backbone2.2.2 Transformer encoder2.2.3 Transformer decoder2.2.4 Prediction feed-forward networks (FFNs)2.2.5 Auxiliary decoding losses2.3 更具体的结构2.4 编码器的原理和作用2.5 解码器的原理和作用…...

【LeetCode】剑指 Offer 41. 数据流中的中位数 p214 -- Java Version

题目链接&#xff1a;https://leetcode.cn/problems/shu-ju-liu-zhong-de-zhong-wei-shu-lcof 1. 题目介绍&#xff08;41. 数据流中的中位数&#xff09; 如何得到一个数据流中的中位数&#xff1f;如果从数据流中读出奇数个数值&#xff0c;那么中位数就是所有数值排序之后位…...

CSS3 知识总结

1&#xff0c;什么是CSS 用于定义网页的样式&#xff0c;包括不同设备和屏幕尺寸的设计、布局和显示变化。 2&#xff0c;CSS的作用优点 CSS 描述 HTML 元素如何在屏幕、纸张或其他媒体上显示 CSS 节省了大量工作。它可以一次控制多个网页的布局 3&#xff0c;css构成 CSS 规…...

回溯算法37:解数独

主要是我自己刷题的一些记录过程。如果有错可以指出哦&#xff0c;大家一起进步。 转载代码随想录 原文链接&#xff1a; 代码随想录 leetcode链接&#xff1a;37. 解数独 题目&#xff1a; 编写一个程序&#xff0c;通过填充空格来解决数独问题。 数独的解法需 遵循如下规则…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...