完整网络模型训练(一)
文章目录
- 一、网络模型的搭建
- 二、网络模型正确性检验
- 三、创建网络函数
一、网络模型的搭建
以CIFAR10数据集作为训练例子
准备数据集:
#因为CIFAR10是属于PRL的数据集,所以需要转化成tensor数据集
train_data = torchvision.datasets.CIFAR10(root="./data", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="./data", train=False, transform=torchvision.transforms.ToTensor(),download=True)
查看数据集的长度:
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为{train_data_size}")
print(f"测试数据集的长度为{test_data_size}")
运行结果:
利用DataLoader来加载数据集:
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
搭建CIFAR10数据集神经网络:
卷积层【1】代码解释:
#第一个数字3表示inputs(可以看到图中为3),第二个数字32表示outputs(图中为32)
#第三个数字5为卷积核(图中为5),第四个数字1表示步长(stride)
#第五个数字表示padding,需要计算,计算公式:
nn.Conv2d(3, 32, 5, 1, 2)
最大池化代码解释:
#数字2表示kernel卷积核
nn.MaxPool2d(2)
读图
卷积层【1】的Inputs 和 Outputs是下图这两个:
最大池化【1】的Inputs 和 Outputs是下图这两个:
卷积层【2】的Inputs 和 Outputs是下图这两个:
以此类推
展平:
Flatten后它会变成64*4 *4的一个结果
线性输出:
线性输入是64*4 *4,线性输出是64,故如下代码
nn.LInear(64 *4 *4,64)
继续线性输出
nn.LInear(64,10)
搭建网络完整代码:
class Sen(nn.Module):def __init__(self):super(Sen, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1 ,2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self,x):x = self.model(x)return x
二、网络模型正确性检验
if __name__ == '__main__':sen = Sen()input = torch.ones((64, 3, 32, 32))output = sen(input)print(output.shape)
注释:
input = torch.ones((64, 3, 32, 32))
这一行代码的含义是:创建一个大小为 (64, 3, 32, 32) 的全 1 张量,数据类型为 torch.float32。
64:这是批次大小,代表输入有 64 张图片。
3:这是图片的通道数,通常为 RGB 图像的三个通道 (红、绿、蓝)。
32, 32:这是图片的高和宽,表示每张图片的尺寸为 32x32 像素。
torch.ones 函数用于生成一个全 1 的张量,这里的张量形状适合用于输入图像分类或卷积神经网络(CNN)中常见的 CIFAR-10 或类似的 32x32 像素图像数据。
运行结果:
可以得到成功变成了【64, 10】的结果。
三、创建网络函数
创建网络模型:
sen = Sen()
搭建损失函数:
loss_fn = nn.CrossEntropyLoss()
优化器:
learning_rate = 1e-2
optimizer = torch.optim.SGD(sen.parameters(), lr=learning_rate)
优化器注释:
使用随机梯度下降(SGD)优化器
learning_rate = 1e-2 这里的1e-2代表的是:1 x (10)^(-2) = 1/100 = 0.01
记录训练的次数:
total_train_step = 0
记录测试的次数:
total_test_step = 0
训练的轮数:
epoch= 10
进行循环训练:
for i in range(epoch):print(f"第{i+1}轮训练开始")for data in train_dataloader:imgs, targets = dataoutputs = sen(imgs)loss = loss_fn(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()total_train_step = total_train_step + 1print(f"训练次数:{total_train_step},Loss:{loss.item()}")
注释:
imgs, targets = data
是解包数据,imgs 是输入图像,targets 是目标标签(真实值)
outputs = sen(imgs)
将输入图像传入模型 ‘sen’,得到模型的预测输出 outputs
loss = loss_fn(outputs, targets)
计算损失值(Loss),loss_fn 是损失函数,它比较outputs的值与targets 是目标标签(真实值)的误差
optimizer.zero_grad()
清除优化器中上一次计算的梯度,以免梯度累积
loss.backward()
反向传播,计算损失相对于模型参数的梯度
optimizer.step()
使用优化器更新模型的参数,以最小化损失
loss.item() 将张量转换为 Python 的数值
loss.item演示:
import torch
a = torch.tensor(5)
print(a)
print(a.item())
运行结果:
因此可以得到:item的作用是将tensor变成真实数字5
本章节完整代码展示:
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoaderclass Sen(nn.Module):def __init__(self):super(Sen, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1 ,2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self,x):x = self.model(x)return x
#准备数据集
#因为CIFAR10是属于PRL的数据集,所以需要转化成tensor数据集
train_data = torchvision.datasets.CIFAR10(root="./data", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="./data", train=False, transform=torchvision.transforms.ToTensor(),download=True)#length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为{train_data_size}")
print(f"测试数据集的长度为{test_data_size}")train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)sen = Sen()#损失函数
loss_fn = nn.CrossEntropyLoss()#优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(sen.parameters(), lr=learning_rate)#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epoch= 10for i in range(epoch):print(f"第{i+1}轮训练开始")for data in train_dataloader:imgs, targets = dataoutputs = sen(imgs)loss = loss_fn(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()total_train_step = total_train_step + 1print(f"训练次数:{total_train_step},Loss:{loss.item()}")
运行结果:
可以看到训练的损失函数在一直进行修正。
相关文章:

完整网络模型训练(一)
文章目录 一、网络模型的搭建二、网络模型正确性检验三、创建网络函数 一、网络模型的搭建 以CIFAR10数据集作为训练例子 准备数据集: #因为CIFAR10是属于PRL的数据集,所以需要转化成tensor数据集 train_data torchvision.datasets.CIFAR10(root&quo…...

高效便捷,体验不一样的韩语翻译神器
嘿,大家好啊!今天想跟大家聊聊我用过的几款翻译神器,特别是它们在翻译韩语时的那些小感受。作为一个偶尔需要啃啃韩语资料或者跟韩国朋友聊天的普通人,我真心觉得这些翻译工具简直就是我的救星! 一、福昕在线翻译 网址…...

Markdown笔记管理工具Haptic
什么是 Haptic ? Haptic 是一个新的本地优先、注重隐私的开源 Markdown 笔记管理工具。它简约、轻量、高效,旨在提供您所需的一切,而不包含多余的功能。 目前官方提供了 docker 和 Mac 客户端。 Haptic 仍在积极开发中。以下是未来计划的一些…...

网络原理-传输层UDP
上集回顾: 上一篇博客中讲述了应用层如何自定义协议:确定传输信息,确定数据格式 应用层也有一些现成的协议:HTTP协议 这一篇博客中来讲述传输层协议 传输层 socket api都是传输层协议提供的(操作系统内核实现的了…...

C++中,如何使你设计的迭代器被标准算法库所支持。
iterator(读写迭代器) const_iterator(只读迭代器) reverse_iterator(反向读写迭代器) const_reverse_iterator(反向只读迭代器) 以经常介绍的_DList类为例,它的迭代…...
Java NIO 全面详解:掌握 `Path` 和 `Files` 的一切
在 Java 7 中引入的 NIO (New I/O) 为文件系统和流的操作带来了强大的能力,其中 Path 和 Files 是核心部分。Path 作为对文件路径的抽象,提供了灵活的方式处理文件系统中的路径;Files 则通过一系列静态方法,使得文件的读写、复制、…...
bluez免提协议hands-free介绍,全到无法想象,bluez hfp ag介绍
零. 前言 由于Bluez的介绍文档有限,以及对Linux 系统/驱动概念、D-Bus 通信和蓝牙协议都有要求,加上网络上其实没有一个完整的介绍Bluez系列的文档,所以不管是蓝牙初学者还是蓝牙从业人员,都有不小的难度,学习曲线也相对较陡,所以我有了这个想法,专门对Bluez做一个系统…...

关于区块链的安全和隐私
背景 区块链技术在近年来发展迅速,被认为是安全计算的突破,但其安全和隐私问题在不同应用中的部署仍处于争论焦点。 目的 对区块链的安全和隐私进行全面综述,帮助读者深入了解区块链的相关概念、属性、技术和系统。 结构 首先介绍区块链…...

特征工程——一门提高机器学习性能的艺术
当前围绕人工智能(AI)和机器学习(ML)展开的许多讨论以模型为中心,聚焦于 ML和深度学习(DL)的最新进展。这种模型优先的方法往往对用于训练这些模型的数据关注不足,甚至完全忽视。类似MLOps的领域正迅速发展,通过系统性地训练和利用ML模型&…...

Paper解读:工作场所人机协作的团队形成:促进组织变革的目标编程模型
人工智能(AI)具有降低运营成本、提高效率和改善客户体验的潜力。 因此,在组织中组建项目团队至关重要,这样他们就会在决策过程中欢迎人工智能。 当前的技术革命要求公司快速变革,并增加了对团队在促进创新采用方面的作…...

图文深入理解Oracle Network配置管理(一)
List item 本篇图文深入介绍Oracle Network配置管理。 Oracle Network概述 Oracle Net 服务 Oracle Net 监听程序 <oracle_home>/network/admin/listener.ora <oracle_home>/network/admin/sqlnet.ora建立网络连接 要建立客户机或中间层连接,Oracle…...

leetcode-链表篇3
leetcode-61 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 1: 输入:head [1,2,3,4,5], k 2 输出:[4,5,1,2,3]示例 2: 输入:head [0,1,2], k 4 输出&#x…...

RAG(Retrieval Augmented Generation)及衍生框架:CRAG、Self-RAG与HyDe的深入探讨
近年来,随着大型语言模型(LLMs)的迅猛发展,我们在寻求更精确、更可靠的语言生成能力上取得了显著进展。其中,检索增强生成(Retrieval-Augmented Generation)作为一种创新方法,极大地…...

C语言介绍
什么是C语言 C programing language 能干什么 Hello world? 如何学C语言 no reading no learning...

损失函数篇 | YOLOv10 更换损失函数之 MPDIoU | 《2023 一种用于高效准确的边界框回归的损失函数》
论文地址:https://arxiv.org/pdf/2307.07662v1.pdf 边界框回归(Bounding Box Regression,BBR)在目标检测和实例分割中得到了广泛应用,是目标定位的重要步骤。然而,对于边界框回归的大多数现有损失函数来说,当预测的边界框与真值边界框具有相同的长宽比,但宽度和高度的…...

WMware安装WMware Tools(Linux~Ubuntu)
1、这里终端里面输入sudo apt upgrade用于更新最新的包 sudo apt upgrade 2、安装 open-vm-tools-desktop 包, Ps:这里是以为我已经安装好了。 udo apt install open-vm-tools-desktop -y3、最后重启就大功告成了 reboot 4、测试是否成功:…...
SLAM ORB-SLAM2(30)关键帧跟踪
SLAM ORB-SLAM2(30)关键帧跟踪 1. 关键帧跟踪2. TrackReferenceKeyFrame2.1. 将当前普通帧的描述子转化为BoW向量2.2. 通过词袋BoW加速当前帧与参考帧之间的特征点匹配2.3. 将上一帧的位姿态作为当前帧位姿的初始值2.4. 通过优化3D-2D的重投影误差来获得位姿2.5. 剔除优化后的…...
k8s 部署 prometheus
创建namespace prometheus-namespace.yaml apiVersion: v1 kind: Namespace metadata:name: ns-prometheus拉取镜像 docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/prometheus/prometheus:v2.54.0prometheus配置文件configmap prometheus-configmap.yaml …...

使用VBA快速生成Excel工作表非连续列图片快照
Excel中示例数据如下图所示。 现在需要拷贝A2:A15,D2:D15,J2:J15,L2:L15,R2:R15为图片,然后粘贴到A18单元格,如下图所示。 大家都知道VBA中Range对象有CopyPicture方法可以拷贝为图片,但是如果Range对象为非连续区域,那么将产生10…...
解决GitHub下载速度慢
解决GitHub下载速度慢 方法一:使用git clone 地址 --depth 1来下载 depth 1 表示只科隆最新的一次提交,也就是默认主分支,而不是完整地克隆整个代码仓库,这样可以减少下载地数据,加快克隆操作 可以用git clone 地址 …...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...

欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!
多连接 BLE 怎么设计服务不会乱?分层思维来救场! 作者按: 你是不是也遇到过 BLE 多连接时,调试现场像网吧“掉线风暴”? 温度传感器连上了,心率带丢了;一边 OTA 更新,一边通知卡壳。…...