Hadoop之——WordCount案例与执行本地jar包
目录
一、WordCount代码
(一)WordCount简介
1.wordcount.txt
(二)WordCount的java代码
1.WordCountMapper
2.WordCountReduce
3.WordCountDriver
(三)IDEA运行结果
(四)Hadoop运行wordcount
1.在HDFS上新建一个文件目录
2.新建一个文件,并上传至该目录下
3.执行wordcount命令
4.查看运行结果
5.第二次提交报错原因
6.进入NodeManager查看
7.启动历史服务器(如果已经启动可以忽略此步骤)
8.查看历史服务信息
三、执行本地代码
(一)项目代码
1.stuscore.csv
2.Student类
2.StudentMapper类
4.StudentReduce类
5.StudentDriver类
(二)java代码中指定路径
1.maven项目编译并打包
2.上传stuscore.csv到hdfs指定目录下
3.xftp上传target目录下的打包好的jar包上传到虚拟机
4.Hadoop运行hadoopstu-1.0-SNAPSHOT.jar
5.Hadoop运行结果
(三)java代码中不指定路径
1.StuudentDriver类
2.重新编译打包上传
3.HDFS命令执行该jar包
4.查看运行结果
一、WordCount代码
(一)WordCount简介
WordCount是大数据经典案例,其逻辑就是有一个文本文件,通过编写java代码与Hadoop核心组件的操作,查询每个单词出现的频率。
1.wordcount.txt
hello java hello hadoop hello java hadoop java hadoop java hadoop hadoop java hello java
(二)WordCount的java代码
1.WordCountMapper
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;// Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
// <0,"hello world","hello",1>
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {Text text = new Text();IntWritable intWritable = new IntWritable();@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {System.out.println("WordCount stage Key:"+key+" Value:"+value);String[] words = value.toString().split(" ");// "hello world" -->[hello,world]for (String word :words) {text.set(word);intWritable.set(1);context.write(text,intWritable);// 输出键值对 <hello,1><world,1>}}
}
2.WordCountReduce
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;// <KEYIN, VALUEIN, KEYOUT, VALUEOUT>
public class WordCountReduce extends Reducer<Text, IntWritable,Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {System.out.println("Reduce stage Key:"+key+" Values:"+values.toString());int count = 0;for (IntWritable intWritable :values) {count += intWritable.get();}
// LongWritable longWritable = new LongWritable();
// longWritable.set(count);LongWritable longWritable = new LongWritable(count);System.out.println("Key:"+key+" ResultValue:"+longWritable.get());context.write(key,longWritable);}
}
3.WordCountDriver
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(WordCountDriver.class);// 设置mapper类job.setMapperClass(WordCountMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 设置reduce类job.setReducerClass(WordCountReduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);// 指定map输入的文件路径FileInputFormat.setInputPaths(job,new Path("D:\\javaseprojects\\hadoopstu\\input\\demo1\\wordcount.txt"));// 指定reduce结果输出的文件路径Path path = new Path("D:\\javaseprojects\\hadoopstu\\output");FileSystem fileSystem = FileSystem.get(path.toUri(),configuration);if(fileSystem.exists(path)){fileSystem.delete(path,true);}FileOutputFormat.setOutputPath(job,path);job.waitForCompletion(true);
// job.setJobName("");}
}
(三)IDEA运行结果


(四)Hadoop运行wordcount
1.在HDFS上新建一个文件目录
[root@lxm147 ~]# hdfs dfs -mkdir /inputpath
2023-02-10 23:05:40,098 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[root@lxm147 ~]# hdfs dfs -ls /
2023-02-10 23:05:52,217 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
drwxr-xr-x - root supergroup 0 2023-02-08 08:06 /aa
drwxr-xr-x - root supergroup 0 2023-02-10 10:52 /bigdata
drwxr-xr-x - root supergroup 0 2023-02-10 23:05 /inputpath
2.新建一个文件,并上传至该目录下
[root@lxm147 mapreduce]# vim ./test.csv
[root@lxm147 mapreduce]# hdfs dfs -put ./test.csv /inputpath

3.执行wordcount命令
[root@lxm147 mapreduce]# hadoop jar ./hadoop-mapreduce-examples-3.1.3.jar wordcount /inputpath /outputpath
4.查看运行结果
(1)web端



(2)命令行
[root@lxm147 mapreduce]# hdfs dfs -cat /outputpath/part-r-00000
2023-02-10 23:26:06,276 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2023-02-10 23:26:07,793 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
hadoop 1
hello 2
java 2
javaweb 1
mybatis 2
spring 1
5.第二次提交报错原因
执行wordcount命令前删除/outpath目录下的文件再执行即可
6.进入NodeManager查看
http://lxm147:8088/cluster

7.启动历史服务器(如果已经启动可以忽略此步骤)
[root@lxm148 ~]# mr-jobhistory-daemon.sh start historyserver
WARNING: Use of this script to start the MR JobHistory daemon is deprecated.
WARNING: Attempting to execute replacement "mapred --daemon start" instead.
[root@lxm148 ~]# jps
4546 SecondaryNameNode
6370 JobHistoryServer
4164 NameNode
4804 ResourceManager
4937 NodeManager
6393 Jps
4302 DataNode
8.查看历史服务信息
http://lxm147:19888/



三、执行本地代码
(一)项目代码
1.stuscore.csv
1,zs,10,语文 2,ls,98,语文 3,ww,80,语文 1,zs,20,数学 2,ls,87,数学 3,ww,58,数学 1,zs,44,英语 2,ls,66,英语 3,ww,40,英语 1,zs,55,政治 2,ls,60,政治 3,ww,80,政治 1,zs,10,化学 2,ls,28,化学 3,ww,78,化学 1,zs,87,生物 2,ls,9,生物 3,ww,10,生物
2.Student类
import org.apache.hadoop.io.WritableComparable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class Student implements WritableComparable<Student> {private long stuid;private String stuname;private int score;private String lession;@Overridepublic int compareTo(Student o) {return this.score > o.score ? 1 : 0;}@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeLong(stuid);dataOutput.writeUTF(stuname);dataOutput.writeUTF(lession);dataOutput.writeInt(score);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.stuid = dataInput.readLong();this.stuname = dataInput.readUTF();this.lession = dataInput.readUTF();this.score = dataInput.readInt();}@Overridepublic String toString() {return "Student{" +"stuid=" + stuid +", stuname='" + stuname + '\'' +", score=" + score +", lession='" + lession + '\'' +'}';}public long getStuid() {return stuid;}public void setStuid(long stuid) {this.stuid = stuid;}public String getStuname() {return stuname;}public void setStuname(String stuname) {this.stuname = stuname;}public int getScore() {return score;}public void setScore(int score) {this.score = score;}public String getLession() {return lession;}public void setLession(String lession) {this.lession = lession;}public Student(long stuid, String stuname, int score, String lession) {this.stuid = stuid;this.stuname = stuname;this.score = score;this.lession = lession;}public Student() {}
}
2.StudentMapper类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;// K=id,V=student
// Mapper<进来的K,进来的V,出去的K,出去的V>
public class StudentMapper extends Mapper<LongWritable, Text, LongWritable, Student> {@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, LongWritable, Student>.Context context) throws IOException, InterruptedException {System.out.println(key+" "+value.toString());String[] split = value.toString().split(",");LongWritable stuidKey = new LongWritable(Long.parseLong(split[2]));Student studentValue = new Student(Long.parseLong(split[0]), split[1], Integer.parseInt(split[2]),split[3]);context.write(stuidKey,studentValue);}
}
4.StudentReduce类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class StudentReduce extends Reducer<LongWritable, Student, Student, NullWritable> {@Overrideprotected void reduce(LongWritable key, Iterable<Student> values, Reducer<LongWritable, Student, Student, NullWritable>.Context context) throws IOException,InterruptedException {Student stu = new Student();// 相同key相加
// int sum = 0;int max = 0;String name ="";String lession = "";
// for (Student student:
// values) {
// sum += student.getScore();
// name = student.getStuname();
// }// 求每门科目的最高分for (Student student :values) {if(max<=student.getScore()){max = student.getScore();name = student.getStuname();lession = student.getLession();}}stu.setStuid(key.get());stu.setScore(max);stu.setStuname(name);stu.setLession(lession);System.out.println(stu.toString());context.write(stu,NullWritable.get());}
}
5.StudentDriver类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class StudentDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(StudentDriver.class);job.setMapperClass(StudentMapper.class);job.setMapOutputKeyClass(LongWritable.class);job.setMapOutputValueClass(Student.class);job.setReducerClass(StudentReduce.class);job.setOutputKeyClass(Student.class);job.setOutputValueClass(NullWritable.class);// 指定路径FileInputFormat.setInputPaths(job,new Path("hdfs://lxm147:9000/bigdata/in/demo2/stuscore.csv"));Path path = new Path("hdfs://lxm147:9000/bigdata/out2");// 不指定路径/* Path inpath = new Path(args[0]);FileInputFormat.setInputPaths(job, inpath);Path path = new Path(args[1]);*/FileSystem fs = FileSystem.get(path.toUri(), configuration);if (fs.exists(path)) {fs.delete(path, true);}FileOutputFormat.setOutputPath(job, path);job.waitForCompletion(true);}
}
(二)java代码中指定路径
1.maven项目编译并打包
分别双击compile和package

2.上传stuscore.csv到hdfs指定目录下
hdfs dfs -put /opt/stuscore.csv /bigdata/in/demo2
3.xftp上传target目录下的打包好的jar包上传到虚拟机

4.Hadoop运行hadoopstu-1.0-SNAPSHOT.jar
[root@lxm147 opt]# hadoop jar ./hadoopstu-1.1.0-SNAPSHOT.jar nj.zb.kb21.demo2.StudentDriver /bigdata/in/demo2/stuscore.csv /bigdata/out2
5.Hadoop运行结果

(三)java代码中不指定路径
1.StuudentDriver类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class StudentDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(StudentDriver.class);job.setMapperClass(StudentMapper.class);job.setMapOutputKeyClass(LongWritable.class);job.setMapOutputValueClass(Student.class);job.setReducerClass(StudentReduce.class);job.setOutputKeyClass(Student.class);job.setOutputValueClass(NullWritable.class);// 指定路径/*FileInputFormat.setInputPaths(job,new Path("hdfs://lxm147:9000/bigdata/in/demo2/stuscore.csv"));Path path = new Path("hdfs://lxm147:9000/bigdata/out2");*/// 不指定路径Path inpath = new Path(args[0]);FileInputFormat.setInputPaths(job, inpath);Path path = new Path(args[1]);FileSystem fs = FileSystem.get(path.toUri(), configuration);if (fs.exists(path)) {fs.delete(path, true);}FileOutputFormat.setOutputPath(job, path);job.waitForCompletion(true);}
}
2.重新编译打包上传
为了方便区分,这里修改版本号再重新编译打包

3.HDFS命令执行该jar包
[root@lxm147 opt]# hadoop jar ./hadoopstu-1.1.0-SNAPSHOT.jar nj.zb.kb21.demo2.StudentDriver /bigdata/in/demo2/stuscore.csv /bigdata/out
4.查看运行结果
[root@lxm147 opt]# hdfs dfs -cat /bigdata/out/part-r-00000
Student{stuid=1, stuname='zs', score=226}
Student{stuid=2, stuname='ls', score=348}
Student{stuid=3, stuname='ww', score=346}
相关文章:
Hadoop之——WordCount案例与执行本地jar包
目录 一、WordCount代码 (一)WordCount简介 1.wordcount.txt (二)WordCount的java代码 1.WordCountMapper 2.WordCountReduce 3.WordCountDriver (三)IDEA运行结果 (四)Hadoop运行wordcount 1.在HDFS上新建一个文件目录 2.新建一个文件,并上传至该目录下…...
利用git reflog 命令来查看历史提交记录,并使用提交记录恢复已经被删除掉的分支
一.问题描述 当我们在操作中手误删除了某个分支,那该分支中提交的内容也没有了,我们可以利用git reflog这个命令来查看历史提交的记录从而恢复被删除的分支和提交的内容 二.模拟问题 1.创建git仓库,并提交一个文件 [rootcentos7-temp /da…...
【软件测试】大厂测试开发你真的了解吗?测试开发养成记......
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 在一些大公司里&…...
Redis中的hash结构和扩容机制
1.rehash原理 hash包含两个数据结构为字典数组ht[0]和ht[1]。其中ht[0]用来存放数据,ht[1]在rehash时使用。 扩容时,ht[1]的大小为第一个大于等于ht[0].used*2的2的幂次方的数; 收缩时,ht[1]的大小为第一个大于等于ht[0].used的…...
【C++奇技淫巧】前置自增与后置自增的区别(++i,i++)【2023.02.08】
简介 先说i和i的区别,判断语句中if(i)是拿i的值先判断,而后自增;if(i)是先自增i再进行判断。涉及到左值与右值也有点区别,i返回的是右值,i返回的是左值。也就是下面的代码要解释的东西。 #include <iostream>i…...
实战打靶集锦-005-HL
**写在前面:**记录一次曲折的打靶经历。 目录1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查4.1 浏览器访问4.2 目录枚举4.3 探查admin4.4 探查index4.5 探查login5 公共EXP搜索6. 再次目录枚举6.1 探查superadmin.php6.2 查看页面源代码6.3 base64绕过6.4 构建反弹…...
铁路系统各专业介绍(车机工电辆)
目录 1 车务段 1.1 职能简介 1.2 路段名单 1.3 岗位级别 2 机务段 2.1 职能简介 2.2 路段名单 2.3 岗位级别 3 工务段 3.1 职能简介 3.2 路段名单 3.3 岗位级别 4 电务段 4.1 职能简介 4.2 路段名单 4.3 岗位级别 5 车辆段 5.1 职能简介 5.2 路段名单 5.3 …...
2/11考试总结
时间安排 7:30–7:50 读题,T1貌似是个 dp ,T2 数据结构,T3 可能是数据结构。 7:50–9:45 T1,点规模非常大,可以达到 1e18 级别,感觉应该没法直接做,考虑每条新增的边的贡献,想到用 …...
Java Set集合
7 Set集合 7.1 Set集合的概述和特点 Set集合的特点 不包含重复元素的集合没有带索引的方法,所以不能使用普通for循环 Set集合是接口通过实现类实例化(多态的形式) HashSet:添加的元素是无序,不重复,无索引…...
【手写 Vuex 源码】第七篇 - Vuex 的模块安装
一,前言 上一篇,主要介绍了 Vuex 模块收集的实现,主要涉及以下几个点: Vuex 模块的概念;Vuex 模块和命名空间的使用;Vuex 模块收集的实现-构建“模块树”; 本篇,继续介绍 Vuex 模…...
EOC第六章《块与中枢派发》
文章目录第37条:理解block这一概念第38条:为常用的块类型创建typedef第39条:用handler块降低代码分散程度第41条:多用派发队列,少用同步锁方案一:使用串行同步队列来将读写操作都安排到同一个队列里&#x…...
八、Git远程仓库操作——跨团队成员的协作
前言 前面一篇博文介绍了git团队成员之间的协作,现在在介绍下如果是跨团队成员的话,如何协作? 跨团队成员协作,其实就是你不属于那个项目的成员,你没有权限向那个仓库提交代码。但是github还有另一种 pull request&a…...
算法刷题打卡第88天:字母板上的路径
字母板上的路径 难度:中等 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "…...
UVa The Morning after Halloween 万圣节后的早晨 双向BFS
题目链接:The Morning after Halloween 题目描述: 给定一个二维矩阵,图中有障碍物和字母,你需要把小写字母移动到对应的大写字母位置,不同的小写字母可以同时移动(上下左右四个方向或者保持不动 ࿰…...
Connext DDS属性配置参考大全(3)
Transport传输dds.participant.logging.time_based_logging.process_received_messagedds.participant.logging.time_based_logging.process_received_message.timeout...
Docker-安装Jenkins-使用jenkins发版Java项目
文章目录0.前言环境背景1.操作流程1.1前期准备工作1.1.1环境变量的配置1.2使用流水线的方式进行发版1.2.1新建流水线任务1.2.2流水线操作工具tools步骤stages步骤1:拉取代码编译步骤2:发送文件并启动0.前言 学海无涯,旅“途”漫漫,“途”中小记ÿ…...
spring 中的 Bean 是否线程安全
文章目录结论1、spring中的Bean从哪里来?2、spring中什么样的Bean存在线程安全问题?3、如何处理spring Bean的线程安全问题?结论 其实,Spring 中的 Bean 是否线程安全,其实跟 Spring 容器本身无关。Spring框架中没有提…...
微电网两阶段鲁棒优化经济调度方法[3]【升级优化版本】(Matlab代码实现)
💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑…...
C++入门教程||C++ 数据类型||C++ 变量类型
C 数据类型 使用编程语言进行编程时,需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着,当您创建一个变量时,就会在内存中保留一些空间。 您可能需要存储各种数据类型(比如字符型、宽字符型、整型…...
【visio使用技巧】图片导出pdf时去掉多余空白
问题 在visio导出pdf格式的图片时,往往会存在多余的白边,如下图所示: 解决方法 依次点击:菜单栏→文件→选项→自定义功能区→勾选“开发工具”→确定。 依次点击菜单栏→开发工具→显示ShapeSheet→页→Print Properties→将…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...
