回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测
回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测
文章目录
- 一、基本原理
- 原理
- 流程
- 总结
- 二、实验结果
- 三、核心代码
- 四、代码获取
- 五、总结
回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测
一、基本原理
回归预测结合卷积神经网络(CNN)和支持向量机(SVM)是一种有效的数据分析方法,可以利用CNN提取数据特征,再通过SVM进行回归预测。以下是详细原理和流程的介绍,以及一个基本的Matlab程序框架。
原理
-
卷积神经网络(CNN):
- CNN适合处理图像、时间序列等高维数据,通过卷积层提取局部特征。
- 网络包括卷积层、激活层、池化层和全连接层,逐层提取特征并减少维度。
-
支持向量机(SVM):
- SVM是一种监督学习模型,适合于分类和回归问题。
- 在回归中,SVM通过寻找最佳超平面来拟合数据,能够有效处理高维数据。
-
特征融合:
- 将CNN提取的特征与原始特征结合,利用SVM进行最终的回归预测。
流程
-
数据准备:
- 收集并预处理数据,确保数据格式适合输入到CNN。
-
构建CNN模型:
- 定义CNN架构,包括卷积层、池化层和全连接层。
- 使用训练数据对CNN进行训练,提取特征。
-
特征提取:
- 使用训练后的CNN对训练集和测试集进行前向传播,提取特征。
-
特征融合:
- 将CNN提取的特征与原始特征进行拼接,形成新的特征集。
-
训练SVM模型:
- 使用融合后的特征集训练SVM回归模型。
-
预测与评估:
- 使用测试集中的数据进行预测,并评估模型性能(如MSE、R²等指标)。
总结
通过将CNN与SVM结合,可以充分利用CNN强大的特征提取能力以及SVM的回归性能,从而提高回归预测的准确性。在实际应用中,可以根据具体问题调整CNN参数和SVM的配置,以获得最佳效果。
二、实验结果
1.输入多个特征,输出单个变量,多变量回归预测;
2.excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;
3.命令窗口输出R2、MSE、MAE;
4.可视化:代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的收敛图、对比图、拟合图、残差图。





三、核心代码
%% 导入数据
res = xlsread('数据集.xlsx');%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据平铺
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));
四、代码获取
五、总结
包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等
用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出
相关文章:
回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测
回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测 文章目录 一、基本原理原理流程总结 二、实验结果三、核心代码四、代码获取五、总结 回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提…...
javaScript基础知识汇总
一、基础语法 1、区分大小写:无论是变量、函数名还是操作符,都区分大小写。 2、标识符:就是变量、函数、属性或函数参数的名称。标识符可以由一个或多个字符构成,但需要满足以下条件: 第一个字符必须是一个字母、下…...
《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)
目录 0. 前言 正文:参数管理 1. 参数访问 1.1 [目标参数] 1.2 [一次性访问所有参数] 1.3 [从嵌套块收集参数] 2. 参数初始化 2.1 [内置初始化] 2.2 [自定义初始化] 2.3 [参数绑定-共享参数] 3. 小结(第2节) 4. 延后初始化 (原书第…...
双端之Nginx+Php结合PostgreSQL搭建Wordpress
第一台虚拟机:安装 Nginx 更新系统包列表: sudo apt update安装 Nginx及php扩展: sudo apt install nginx php-fpm php-pgsql php-mysqli -y启动 Nginx 服务: sudo systemctl start nginx检查 Nginx 是否正常运行: xdg-open http://localhost注意:终端命令打开网址 …...
Another redis desktop manager使用说明
Another redis desktop manager使用说明 概述界面介绍图示说明连接界面设置界面查看操作日志主界面信息进入redis-cli控制台更多 概述 Another Redis Desktop Manager是一个开源的跨平台 Redis 客户端,提供了简洁易用的图形用户界面(GUI)&am…...
【git】配置 Git 的换行符处理和安全性||安装 Ruby
配置 Git 的换行符处理和安全性: git config --global core.autocrlf input:这个设置确保在提交代码时,Git 会将 CRLF(Windows 的换行符)转换为 LF(Unix 的换行符),但在检出代码时不…...
VMware ESXi 8.0U3b macOS Unlocker OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布
VMware ESXi 8.0U3b macOS Unlocker & OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布 VMware ESXi 8.0U3b macOS Unlocker & OEM BIOS 2.7 标准版和厂商定制版 ESXi 8.0U3 标准版,Dell (戴尔)、HPE (慧与)、Lenovo (联想)、IEIT SYSTEMS (浪潮信息)、Cisco …...
Unity 代码裁剪(Strip Engine Code)
文章目录 0.IL2CPP 打包运行闪退问题1.什么是代码裁剪2.为什么要使用代码裁剪3.代码裁剪设置与级别4.强制保留代码4.1 使用[Preserve]标签4.2 使用Link.xml文件 5.Strip中遇到的问题及解决方法6.注意事项 0.IL2CPP 打包运行闪退问题 Google Play要求从2019年8月1日起apk必须支…...
单目3d重建DUSt3R 笔记
目录 DUSt3R 三维重建 报错RecursionError: maximum recursion depth exceeded in comparison 报错 numpy.core.multiarray failed to import 报错Numpy is not available 解决 升级版mast3r 速度变慢 修改了参数设置脚本: 测试效果 操作技巧 DUSt3R 三维重…...
AI驱动TDSQL-C Serverless 数据库技术实战营-与AI的碰撞
目录 一、简介 二、实验介绍 三、结果展示 四、实操指导 4.1 系统设计 4.2 环境搭建(手把手教程) 4.3 应用构建 4.4 效果展示 4.5 踩坑避雷总结 五、清理资源 5.1 删除TDSQL-C Serverless 5.2 删除 HAI 算力 六、实验总结归纳 一、简介 本…...
C++之String类(上)
片头 嗨!好久不见~ 今天我们来学习C的Sting类,不过,在学习它之前,我们先来对STL库有一个简单的了解。 STL(standard template library--标准模板库),是C标准库的重要组成部分,不仅是…...
kubernets基础-ingress详细介绍
文章目录 什么是IngressIngress详细说明Ingress示例 Ingress控制器Ingress控制器的工作原理Ingress控制器的特点常见的Ingress控制器 Ingress关联Ingress控制器一、Ingress资源对象二、Ingress控制器三、Ingress与Ingress控制器的关联方式四、注意事项 多实例部署一、Ingress多…...
jenkins部署Maven和NodeJS项目
在 Java 项目开发中,项目的编译、测试、打包等是比较繁琐的,属于重复劳动的工作,浪费人力和时间成本。以往开发项目时,程序员往往需要花较多的精力在引用 jar 包搭建项目环境上,跨部门甚至跨人员之间的项目结构都有可能…...
在unity资源中发现无效引用
本文主要解决在不打开unity的情况下搜索出无效引用的资源的方法 1. 概述 一般只要遍历一下目录里所有资源,判空一下就好了但有些情况下,不希望打开unity, 尤其希望是在资源整合时,想更快验证资源的合法性, 这对合并提交及出包验证时,都要较大的需求 2. 简单的验证方法 简单来…...
C#知识|基于反射和接口实现抽象工厂设计模式
哈喽,你好啊,我是雷工! 01 应用场景 在项目的多数据库支持上、业务的多算法封装、以及各种变化的业务中; 02 抽象工厂组成 抽象工厂包括抽象产品(即业务接口,可以通过抽象类或抽象接口设计)…...
【分布式微服务云原生】gRPC vs RPC:深入探索远程过程调用的现代与经典
摘要 在分布式系统的世界里,gRPC和RPC是两个耳熟能详的术语,但它们之间有何区别和联系?本文将深入探讨gRPC和RPC的概念、关键特性、以及它们在现代软件开发中的应用。你将了解到gRPC如何作为RPC的一种实现,提供高性能的跨语言远程…...
听说这是MATLAB基础?
MATLAB(矩阵实验室)是一个强大的高性能计算环境和编程语言,广泛应用于数学计算、算法开发、数据分析、可视化以及模拟等多个领域。以下是MATLAB的一些基础知识,涵盖其功能、语法、基本操作等方面。 1. MATLAB环境 工作区…...
【CSS/HTML】圣杯布局和双飞翼布局实现两侧宽度固定,中间宽度自适应及其他扩展实现
前沿简介 圣杯布局和双飞翼布局是前端重要的布局方式。两者的功能相同,都是为了实现一个两侧宽度固定,中间宽度自适应的三栏布局。 圣杯布局来源于文章In Search of the Holy Grail,双飞翼布局来源于淘宝UED。 两者的实现方式有差异,但是都…...
数据流和数据流处理技术
一数据流 首先明确数据流概念:数据流是连续不断生成的、快速变化的无界数据序列 数据流类型: 数据流大致可以分为四种类型 1.连续型数据流:不断地产生数据,数据稳定速度输入系统。 2.突发型数据流:在某特定时间或…...
(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案
系列文章目录 文章目录 系列文章目录一、(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案1.资料 一、(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案 1.资料…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
算法—栈系列
一:删除字符串中的所有相邻重复项 class Solution { public:string removeDuplicates(string s) {stack<char> st;for(int i 0; i < s.size(); i){char target s[i];if(!st.empty() && target st.top())st.pop();elsest.push(s[i]);}string ret…...
