当前位置: 首页 > news >正文

基于Python的自然语言处理系列(23):DrQA

        在本篇文章中,我们将实现 DrQA 模型,该模型最初由论文 Reading Wikipedia to Answer Open-Domain Questions 提出。DrQA 是一种用于开放域问答系统的端到端解决方案,最初包括信息检索模块和深度学习模型。本次实现中,我们主要探讨 DrQA 的深度学习模型部分。

1. 数据加载

        DrQA 使用了斯坦福问答数据集(SQuAD)。该数据集由一系列 Wikipedia 文章中的段落和相关问题组成,答案是段落中的某个片段,或问题无法回答。

import jsondef load_json(path):'''加载SQuAD数据集的JSON文件'''with open(path, 'r', encoding='utf-8') as f:data = json.load(f)print("数据集长度: ", len(data['data']))return data# 加载数据
train_data = load_json('data/squad_train.json')
valid_data = load_json('data/squad_dev.json')

2. 数据预处理

        由于 SQuAD 数据集的结构独特,每个段落可能有多个问题和答案,我们需要对其进行解析。我们将每个段落与相关的问题配对,并将其转换为易于处理的结构。

def parse_data(data:dict)->list:'''解析数据集,将每个问题和答案对与对应的段落配对'''qa_list = []for paragraphs in data['data']:for para in paragraphs['paragraphs']:context = para['context']for qa in para['qas']:id = qa['id']question = qa['question']for ans in qa['answers']:qa_dict = {'id': id,'context': context,'question': question,'answer': ans['text'],'label': [ans['answer_start'], ans['answer_start'] + len(ans['text'])]}qa_list.append(qa_dict)return qa_list# 解析数据集
train_list = parse_data(train_data)
valid_list = parse_data(valid_data)

3. 构建词汇表

        为了对文本进行数值化处理,我们需要构建词汇表。我们将使用 spaCy 分词器来帮助处理文本数据。

import spacy
from collections import Counternlp = spacy.load('en_core_web_sm')def build_word_vocab(vocab_text):'''构建词汇表'''words = []for sent in vocab_text:words.extend([word.text for word in nlp(sent, disable=['parser', 'ner'])])word_counter = Counter(words)word_vocab = sorted(word_counter, key=word_counter.get, reverse=True)word_vocab.insert(0, '<unk>')word_vocab.insert(1, '<pad>')word2idx = {word: idx for idx, word in enumerate(word_vocab)}idx2word = {v: k 

相关文章:

基于Python的自然语言处理系列(23):DrQA

在本篇文章中,我们将实现 DrQA 模型,该模型最初由论文 Reading Wikipedia to Answer Open-Domain Questions 提出。DrQA 是一种用于开放域问答系统的端到端解决方案,最初包括信息检索模块和深度学习模型。本次实现中,我们主要探讨 DrQA 的深度学习模型部分。 1. 数据加载 …...

誉天Linux云计算课程学什么?为什么保障就业?

一个IT工程师相当于干了哪些职业? 其中置顶回答生动而形象地描绘道&#xff1a; 一个IT工程师宛如一个超级多面手&#xff0c;相当于——加班狂程序员测试工程师实施工程师网络工程师电工装卸工搬运工超人。 此中酸甜苦辣咸&#xff0c;相信很多小伙伴们都深有体会。除了典…...

无人机控制和飞行、路径规划技术分析

无人机控制和飞行、路径规划技术是现代无人机技术的核心组成部分&#xff0c;它们共同决定了无人机的性能和应用范围。以下是对这些技术的详细分析&#xff1a; 一、无人机控制技术 无人机控制技术主要涉及飞行控制系统的设计、传感器数据的处理以及指令的发送与执行。飞行控…...

【C++】模拟实现红黑树

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:实战项目集 ⚙️操作环境:Visual Studio 2022 目录 一.了解项目功能 二.逐步实现项目功能模块及其逻辑详解 &#x1f4cc;实现RBTreeNode类模板 &#x1f38f;构造RBTreeNode类成员变量 &#x1f38f;实现RBTreeNode类构…...

离线安装docker

背景描述 项目需要在研发环境虚拟机上安装docker部署应用。 所在的服务器是一个内网&#xff0c;无法访问到外网环境。 服务器OS版本是 麒麟V10 linux 安装docker 安装包下载 获取所需版本的docker binary包&#xff0c;官方链接https://download.docker.com/linux/stati…...

MySQL高阶2066-账户余额

目录 题目 准备数据 分析数据 总结 题目 请写出能够返回用户每次交易完成后的账户余额. 我们约定所有用户在进行交易前的账户余额都为0&#xff0c; 并且保证所有交易行为后的余额不为负数。 返回的结果请依次按照 账户&#xff08;account_id), 日期( day ) 进行升序排序…...

《RabbitMQ篇》Centos7安装RabbitMQ

安装RabbitMQ 安装包网盘下载地址 链接&#xff1a;https://pan.baidu.com/s/1bG_nP0iCdAejkctFp1QztQ?pwd4mlw 先上传安装包到服务器&#xff08;erlang-23.3.4.11-1.el7.x86_64.rpm和rabbitmq-server-3.9.16-1.el7.noarch.rpm&#xff09;然后使用指令安装 # 安装 erlang r…...

昇思学习打卡营第31天|深度解密 CycleGAN 图像风格迁移:从草图到线稿的无缝转化

1. 简介 图像风格迁移是计算机视觉领域中的一个热门研究方向&#xff0c;其中 CycleGAN (循环对抗生成网络) 在无监督领域取得了显著的突破。与传统需要成对训练数据的模型如 Pix2Pix 不同&#xff0c;CycleGAN 不需要严格的成对数据&#xff0c;只需两类图片域数据&#xff0c…...

跟我学C++中级篇——空值的定义

一、空值 在提到c/c的空值时&#xff0c;先扯远一些。谈一谈数学中的0&#xff0c;0的出现要晚于其它的数&#xff0c;而0的出现却引发了数学的极大的发展和进步。而在计算机科学中&#xff0c;在使用一个变量时&#xff0c;它的值的可能性有很多&#xff0c;其中&#xff0c;…...

(三)Mysql 数据库系统全解析

一、Mysql 数据库 数据库的作用和优势 作用&#xff1a;集中化存储结构性的数据。优势&#xff1a; 减小数据冗余&#xff0c;避免数据的重复存储。保证数据的真实有效和唯一性&#xff0c;提高数据的质量。方便数据共享访问&#xff0c;使得不同的用户和应用可以方便地获取所需…...

SAP HCM 0001信息类型一个月内有多个成本中心

一般跨部门调动时候&#xff0c;成本中心都会变化&#xff0c;SAP默认都是读取wpbp的最后一一条数据&#xff0c;但是今天过账会读取两个单位的成本中心&#xff0c;一直都觉得很奇怪&#xff0c;SAP如何都拆分出这样的情况&#xff0c; 没办法只有debug&#xff0c;初始化系统…...

字节输入流

1.是什么 字节输入流&#xff08;Byte Input Stream&#xff09;在Java中是用来读取原始字节流的数据。Java的java.io包提供了多种字节输入流类&#xff0c;其中InputStream是所有字节输入流类的超类。以下是关于字节输入流的详细解释和举例&#xff1a; 字节输入流的概念&…...

深度学习-----------------机器翻译与数据集

目录 机器翻译与数据集下载和预处理数据集预处理步骤词元化词汇表该部分总代码 固定长度阶段或填充该部分总代码 转换成小批量数据集用于训练训练模型总代码 机器翻译与数据集 import os import torch from d2l import torch as d2l下载和预处理数据集 #save d2l.DATA_HUB[fr…...

SOMEIP_ETS_151: SD_Send_triggerEventUINT8Reliable_Eventgroup_2

测试目的&#xff1a; 验证DUT在Tester订阅事件组后&#xff0c;能够响应Tester触发的triggerEventUINT8Reliable方法&#xff0c;并将TestEventUINT8Reliable事件发送到订阅请求中端点选项指定的IP地址和端口。 描述 本测试用例旨在确保DUT能够正确处理事件组的订阅请求&am…...

32 C 语言指针的长度与运算(指针加减整数、指针自增自减、同类型指针相减、指针的比较运算)

目录 1 指针的长度 2 指针与整数的加减运算 3 指针自增与自减 4 同类型指针相减 5 指针的比较运算 6 测试题 1 指针的长度 在 C 语言中&#xff0c;sizeof 运算符可以用来计算指针的长度。指针的长度实际上与指针所指向的数据类型无关&#xff0c;而是与系统的位数&…...

【系统架构设计师】经典论文:轮软件三层架构设计

更多内容请见: 备考系统架构设计师-核心总结目录 文章目录 摘要正文总结摘要 本人于 2022 年 1 月参与了中石化 XX 油田 XX 采油厂“用电管理系统”的项目建设,该系统建设目标是实现分单位、分线路、分系统评价、优化、考核,全面提升采油厂用 电管理水平。在该项目组中我担…...

(C语言贪吃蛇)13.实现贪吃蛇四方向的移动

目录 前言 原代码预览 解决方法⚠️ 运行效果 总结 前言 我们上节通过Linux线程实现了两个while(1)同时运行&#xff0c;这样就可以一边控制方向一遍刷新出贪吃蛇的身体节点了。本节我们就来实现贪吃蛇四方向的移动。 (此图片为最终效果) 原代码预览 我们之前的代码是通过…...

Spring Boot + MyBatis 项目中常用注解详解(万字长篇解读)

Spring Boot MyBatis 项目中常用注解详解 在现代Java开发中&#xff0c;Spring Boot和MyBatis是两大热门框架&#xff0c;广泛应用于构建高效、可维护的企业级应用。两者结合使用&#xff0c;可以充分发挥各自的优势&#xff0c;提高开发效率和代码质量。在这个过程中&#x…...

AWS Network Firewall -NAT网关配置只应许白名单域名出入站

1. 创建防火墙 选择防火墙的归属子网&#xff08;选择公有子网&#xff09; 2. 创建规则白名单域名放行 3. 绑定相关规则 继续往下拉 绑定非托管规则 4. 配置网络路由 相关规则 参考图 解释 防火墙的归属公有子网路由表规则机器实例的规则子网路由表规则nat网管路…...

【C语言系统编程】【第二部分:并发编程】2.3 实践与案例分析

2.3 实践与案例分析 2.3.1 案例分析&#xff1a;多线程文件搜索程序 本文中&#xff0c;我们将通过一个多线程文件搜索程序的案例&#xff0c;展示如何在实际项目中应用多线程编程技术&#xff0c;并具体介绍任务分解、线程创建、结果汇总及锁机制的应用。 2.3.1.1 任务分解…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...