当前位置: 首页 > news >正文

深度学习数据增强的常用方法

以下是在深度学习中经常使用的图像增强的方法

目录

前言

1、加噪声

2、调整亮度

3、cutout

4、旋转

5、对比度增强

6、仿射变化扩充图像

7、HSV数据增强

8、错切变化扩充图像

9、平移扩充图像,根图像移动的像素距离可自行调整,具体方法如下注释所示

10、主函数(这里介绍如何调用前面的函数)


前言

数据增强是一种在深度学习中常用的技术,它通过生成新的训练样本来扩展现有的数据集。这一过程通常涉及对原始数据进行一系列变换,如旋转、缩放、裁剪、翻转、颜色调整等,从而创建出与原始数据略有不同的新样本。

1、加噪声

from skimage.util import random_noise# ----1.加噪声---- #def _addNoise(self, img):'''输入:img:图像array输出:加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255'''# return cv2.GaussianBlur(img, (11, 11), 0)return random_noise(img, mode='gaussian', clip=True) * 255

2、调整亮度

  # ---2.调整亮度--- #def _changeLight(self, img):# 从边缘分布中采样alpha = random.uniform(0.35, 1)# 做了一个零矩阵blank = np.zeros(img.shape, img.dtype)# alpha为权重,alpha的img内的像素点的值 + 1-alpha的黑颜色的值return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)

3、cutout

# ---3.cutout--- #def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):'''原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.pyRandomly mask out one or more patches from an image.Args:img : a 3D numpy array,(h,w,c)bboxes : 框的坐标n_holes (int): Number of patches to cut out of each image.length (int): The length (in pixels) of each square patch.'''def cal_iou(boxA, boxB):# 两张图片重叠的部分称为交集,重叠的两张图片的实际占地面积成为并集# IOU=交集:并集'''boxA, boxB为两个框,返回iouboxB为bouding box两张图的交集/两张图的并集'''# determine the (x, y)-coordinates of the intersection rectanglexA = max(boxA[0], boxB[0])yA = max(boxA[1], boxB[1])xB = min(boxA[2], boxB[2])yB = min(boxA[3], boxB[3])if xB <= xA or yB <= yA:return 0.0# compute the area of intersection rectangleinterArea = (xB - xA + 1) * (yB - yA + 1)# compute the area of both the prediction and ground-truth# rectanglesboxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)iou = interArea / float(boxBArea)return iou# 得到h和wif img.ndim == 3:h, w, c = img.shapeelse:_, h, w, c = img.shapemask = np.ones((h, w, c), np.float32)for n in range(n_holes):chongdie = True  # 看切割的区域是否与box重叠太多while chongdie:# 随机选取的x和y会决定一片区域,这片区域最后被剪掉不要了y = np.random.randint(h)x = np.random.randint(w)y1 = np.clip(y - length // 2, 0,h)  # numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_miny2 = np.clip(y + length // 2, 0, h)x1 = np.clip(x - length // 2, 0, w)x2 = np.clip(x + length // 2, 0, w)chongdie = Falsefor box in bboxes:if cal_iou([x1, y1, x2, y2], box) > threshold:chongdie = Truebreakmask[y1: y2, x1: x2, :] = 0.img = img * maskreturn img

4、旋转

def flip(root_path,img_name):   #翻转图像img = Image.open(os.path.join(root_path, img_name))filp_img = img.transpose(Image.FLIP_LEFT_RIGHT)# filp_img.save(os.path.join(root_path,img_name.split('.')[0] + '_flip.jpg'))return filp_img

5、对比度增强

def contrastEnhancement(root_path, img_name):  # 对比度增强image = Image.open(os.path.join(root_path, img_name))enh_con = ImageEnhance.Contrast(image)# contrast = 1.1+0.4*np.random.random()#取值范围1.1-1.5contrast = 1.5image_contrasted = enh_con.enhance(contrast)return image_contrasted

6、仿射变化扩充图像

def fangshe_bianhuan(root_path,img_name): #仿射变化扩充图像img = Image.open(os.path.join(root_path, img_name))img = cv2.cvtColor(numpy.asarray(img) , cv2.COLOR_RGB2BGR)h, w = img.shape[0], img.shape[1]m = cv2.getRotationMatrix2D(center=(w // 2, h // 2), angle=-30, scale=0.5)r_img = cv2.warpAffine(src=img, M=m, dsize=(w, h), borderValue=(0, 0, 0))r_img = Image.fromarray(cv2.cvtColor(r_img, cv2.COLOR_BGR2RGB))return r_img

7、HSV数据增强

def hsv(root_path,img_name):#HSV数据增强h_gain , s_gain , v_gain = 0.5 , 0.5 , 0.5img = Image.open(os.path.join(root_path, img_name))img = cv2.cvtColor(numpy.asarray(img) , cv2.COLOR_RGB2BGR)r = np.random.uniform(-1, 1, 3) * [h_gain, s_gain, v_gain] + 1  # random gainshue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))dtype = img.dtype  # uint8x = np.arange(0, 256, dtype=np.int16)lut_hue = ((x * r[0]) % 180).astype(dtype)lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)lut_val = np.clip(x * r[2], 0, 255).astype(dtype)img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)aug_img = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)aug_img = Image.fromarray(cv2.cvtColor(aug_img, cv2.COLOR_BGR2RGB))return aug_img

8、错切变化扩充图像

def cuoqie(root_path,img_name): #错切变化扩充图像img = Image.open(os.path.join(root_path, img_name))img = cv2.cvtColor(numpy.asarray(img) , cv2.COLOR_RGB2BGR)h, w = img.shape[0], img.shape[1]origin_coord = np.array([[0, 0, 1], [w, 0, 1], [w, h, 1], [0, h, 1]])theta = 30  # shear角度tan = math.tan(math.radians(theta))# x方向错切m = np.eye(3)m[0, 1] = tanshear_coord = (m @ origin_coord.T).T.astype(np.int_)shear_img = cv2.warpAffine(src=img, M=m[:2],dsize=(np.max(shear_coord[:, 0]), np.max(shear_coord[:, 1])),borderValue=(0, 0, 0))c_img = Image.fromarray(cv2.cvtColor(shear_img, cv2.COLOR_BGR2RGB))return c_img

9、平移扩充图像,根图像移动的像素距离可自行调整,具体方法如下注释所示

def pingyi(root_path,img_name):#平移扩充图像,根图像移动的像素距离可自行调整,具体方法如下注释所示img = Image.open(os.path.join(root_path, img_name))img = cv2.cvtColor(numpy.asarray(img) , cv2.COLOR_RGB2BGR)cols , rows= img.shape[0], img.shape[1]M = np.float32([[1, 0, 50], [0, 1, 30]])#50为x即水平移动的距离,30为y 即垂直移动的距离dst = cv2.warpAffine(img, M, (cols, rows),borderValue=(0,255,0))pingyi_img = Image.fromarray(cv2.cvtColor(dst, cv2.COLOR_BGR2RGB))return pingyi_img

10、主函数(这里介绍如何调用前面的函数)

def createImage(imageDir,saveDir):#主函数,8种数据扩充方式,每种扩充一张i=0for name in os.listdir(imageDir):i=i+1saveName="cesun"+str(i)+".jpg"saveImage=contrastEnhancement(imageDir,name)saveImage.save(os.path.join(saveDir,saveName))saveName1 = "flip" + str(i) + ".jpg"saveImage1 = flip(imageDir,name)saveImage1.save(os.path.join(saveDir, saveName1))saveName2 = "brightnessE" + str(i) + ".jpg"saveImage2 = brightnessEnhancement(imageDir, name)saveImage2.save(os.path.join(saveDir, saveName2))saveName3 = "rotate" + str(i) + ".jpg"saveImage = rotation(imageDir, name)saveImage.save(os.path.join(saveDir, saveName3))saveName4 = "fangshe" + str(i) + ".jpg"saveImage = fangshe_bianhuan(imageDir, name)saveImage.save(os.path.join(saveDir, saveName4))saveName5 = "cuoqie" + str(i) + ".jpg"saveImage = cuoqie(imageDir, name)saveImage.save(os.path.join(saveDir, saveName5))saveName6 = "hsv" + str(i) + ".jpg"saveImage = hsv(imageDir, name)saveImage.save(os.path.join(saveDir, saveName6))saveName6 = "pingyi" + str(i) + ".jpg"  #不需要平移变换的,可以注释掉 这三行代码 135 136 137行saveImage = pingyi(imageDir, name)     #不需要平移变换的,可以注释掉 这三行代码saveImage.save(os.path.join(saveDir, saveName6)) #不需要平移变换的,可以注释掉 这三行代码imageDir="jpg" #要改变的图片的路径文件夹  在当前文件夹下,建立文件夹即可
saveDir="kuochong"   #数据增强生成图片的路径文件夹
print('文件的初始文件夹为:' + imageDir)
print('----------------------------------------')
print('文件的转换后存入的文件夹为:' + saveDir)
print('----------------------------------------')
print('开始转换')
print('----------------------------------------')
createImage(imageDir,saveDir)
print('----------------------------------------')
print("数据扩充完成")

相关文章:

深度学习数据增强的常用方法

以下是在深度学习中经常使用的图像增强的方法 目录 前言 1、加噪声 2、调整亮度 3、cutout 4、旋转 5、对比度增强 6、仿射变化扩充图像 7、HSV数据增强 8、错切变化扩充图像 9、平移扩充图像&#xff0c;根图像移动的像素距离可自行调整&#xff0c;具体方法如下注释所示 10、…...

影院管理新篇章:小徐的Spring Boot应用

第三章 系统分析 整个系统的功能模块主要是对各个项目元素组合、分解和更换做出对应的单元&#xff0c;最后在根据各个系统模块来做出一个简单的原则&#xff0c;系统的整体设计是根据用户的需求来进行设计的。为了更好的服务于用户要从小徐影城管理系统的设计与实现方面上做出…...

【H2O2|全栈】关于CSS(9)CSS3扩充了哪些新鲜的东西?(二)

目录 CSS3入门 前言 准备工作 伪元素补充 :before :after 文本溢出属性 转换效果 预告和回顾 后话 CSS3入门 前言 本系列博客主要介绍CSS相关的知识点。 这一期主要介绍以下几个CSS3的知识点&#xff1a; 伪元素补充文本溢出属性转换 没有基础的朋友&#xff…...

java中Files和File对象详情和区别比较

Files 和 File 是 Java 中用于文件处理的两个不同类&#xff0c;分别属于 java.nio.file 和 java.io 包&#xff0c;它们的设计思路和用途有所不同。以下是它们的详细区别&#xff1a; 1. File 对象 File 是 Java 中最早用于处理文件和目录的类&#xff0c;它来自 java.io 包&…...

Unity3D PostLateUpdate为何突然占用大量时间详解

在Unity3D中&#xff0c;直接名为PostLateUpdate的函数并不是Unity标准API中的一部分。然而&#xff0c;这个术语可能指的是在LateUpdate之后执行的某些自定义逻辑或Unity内部机制中的某种后续处理。当提到PostLateUpdate或LateUpdate突然占用大量时间时&#xff0c;我们需要考…...

如何快速熟悉项目

背景 最近新入职&#xff0c;对项目很不熟悉&#xff0c;也不能全部依赖别人&#xff08;别人也不会全心全意去帮你&#xff09;&#xff0c;你大部分还是只能靠自己。材料就是&#xff1a;文档&#xff0c;代码&#xff0c;开发环境。 但是文档&#xff0c;代码&#xff0c;都…...

Spring Boot实现新闻个性化推荐

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…...

优化后的版本

docker_operations.sh #!/bin/bash# all definition NETWORK_NAME"net-1" VOLUME_MOUNT"-v /home/norten/Public/tools:/mnt" # 容器内部挂载到主机的路径 SCRIPT_ROUTE"/mnt" # container_run_medium.sh所在的路径 IMAGE_NAME"ubuntu&quo…...

【Linux系统编程】第二十七弹---文件描述符与重定向:fd奥秘、dup2应用与Shell重定向实战

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、文件描述符fd 1.1、0 & 1 & 2 1.2、文件描述符的分配规则 2、重定向 3、使用 dup2 系统调用 3.1、> 输出…...

开放式耳机哪个品牌好?好用且高性价比的开放式蓝牙耳机推荐

相信很多经常运动的朋友都不是很喜欢佩戴入耳式耳机&#xff0c;因为入耳式耳机真的有很多缺点。 安全方面&#xff1a;在安全上就很容易存在隐患&#xff0c;戴上后难以听到周围环境声音&#xff0c;像汽车鸣笛、行人呼喊等&#xff0c;容易在运动中发生意外。 健康方面&…...

区间合并——模板题

题目描述 给定 n 个区间 [li, ri]&#xff0c;要求合并所有有交集的区间。注意如果在端点处相交&#xff0c;也算有交集。 输出合并完成后的区间个数。 例如&#xff1a;[1, 3] 和 [2, 6] 可以合并为一个区间 [1, 6]。 输入格式 第一行包含整数 n 。 接下来 n 行&#xff0c…...

Microsoft Edge 五个好用的插件

&#x1f423;个人主页 可惜已不在 &#x1f424;这篇在这个专栏 插件_可惜已不在的博客-CSDN博客 &#x1f425;有用的话就留下一个三连吧&#x1f63c; 目录 Microsoft Edge 一.安装游览器 ​编辑 二.找到插件商店 1.打开游览器后&#xff0c;点击右上角的设置&#…...

解决 遇到JWT中claims中获取不到数据的问题

1.先介绍一下JWT的常规流程 用户进行登录将token储存到redis&#xff0c;然后进行其他需要验证的操作时进行验证&#xff0c;比如使用拦截器进行验证&#xff0c;那么id存储的到claims&#xff0c;因为可以在拦截器验证时将其存放到ThreadLocal中&#xff0c;这样通过ThreadLo…...

会议平台后端优化方案

会议平台后端优化方案 通过RTC的学习&#xff0c;我了解到了端对端技术&#xff0c;就想着做一个节省服务器资源的会议平台 之前做了这个项目&#xff0c;快手二面被问到卡着不知如何介绍&#xff0c;便有了这篇文章 分析当下机制 相对于传统视频平台&#xff08;SFU&#xff…...

unixODBC编程(十)分片插入长数据

遇到有LONG数据类型的表&#xff0c;要插入一条数据量很大的行&#xff0c;一次插入的缓冲区会不够大&#xff0c;这时需要一部分一部分的插入LONG数据&#xff0c;这就用到了在执行语句时动态提供数据的机制。在ODBC中要动态提供数据需要几个步骤。 1. 在绑定输入参数时&…...

【Java】—— 集合框架:Collection子接口:Set不同实现类的对比及使用(HashSet、LinkedHashSet、TreeSet)

目录 5. Collection子接口2&#xff1a;Set 5.1 Set接口概述 5.2 Set主要实现类&#xff1a;HashSet 5.2.1 HashSet概述 5.2.2 HashSet中添加元素的过程&#xff1a; 5.2.3 重写 hashCode() 方法的基本原则 5.2.4 重写equals()方法的基本原则 5.2.5 练习 5.3 Set实现类…...

android Activity生命周期

android 中一个 activity 在其生命周期中会经历多种状态。 您可以使用一系列回调来处理状态之间的转换。下面我们来介绍这些回调。 onCreate&#xff08;创建阶段&#xff09; 初始化组件&#xff1a;在这个阶段&#xff0c;Activity的主要工作是进行初始化操作。这包括为Ac…...

C#的面向对象

1&#xff09;对象 算法数据结构 2&#xff09;对象的行为已方法的形式定义的&#xff0c;属性以成员变量的形式定义的 面向对象程序设计的特点 1&#xff09;封装性 2&#xff09;继承性 3&#xff09;多态性 知识点&#xff1a; 封装性面向对象的核心思想&#xff0c;将…...

【区别】三种命令取消已暂存的文件,处理暂存区和文件的跟踪状态

取消已暂存的文件 git restore --staged <文件>、git reset HEAD <文件> 和 git rm --cached <文件> 都可以用于取消已暂存的文件&#xff0c;但它们的作用和使用场景略有不同。下面是它们的区别&#xff1a; 1. git restore --staged <文件> 该命令…...

如何在Spring Boot中有条件地运行CommandLineRunner Bean

PS 使用 Spring Boot 3.1.2 进行测试 1.使用ConditionalOnProperty ConditionalOnProperty仅当特定属性存在或具有特定值时&#xff0c;注释才会创建 Bean 。 在此示例中&#xff0c;仅当或文件中的CommandLineRunner属性db.init.enabled设置为 true时&#xff0c;才会执行。…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...