SSY20241002提高组T4题解__纯数论
题面
题目描述
有一天 p e o p 1 e peop1e peop1e 学长梦到了一个丑陋的式子:
∑ i = 1 n ( ∑ m = 1 R F m ) ! × i ! × ∑ l = 0 i ∑ j = 0 ∑ t = 1 R F t { K i − l } l ! { i ∑ w = 1 R F w − j } j ! = \sum_{i=1}^n (\sum_{m=1}^R F_m)!\times i!\times \sum_{l=0}^i \sum_{j=0}^{\sum_{t=1}^R F_t}\frac{{K}\brace{i-l}}{l!}\frac{{i}\brace{\sum_{w=1}^R F_w-j}}{j!}= i=1∑n(m=1∑RFm)!×i!×l=0∑ij=0∑∑t=1RFtl!{i−lK}j!{∑w=1RFw−ji}=
其中 F i F_i Fi 表示斐波那契数列的第 i i i项, F 0 = 0 , F 1 = 1 , F 2 = 1 F_0 = 0, F_1 = 1, F_2 = 1 F0=0,F1=1,F2=1,
{ n m } {n}\brace{m} {mn}表示第二类斯特林数, 其值为将 n n n 个不同元素放入 m m m 个集合的方案数。
他想了很久都没有想出来, 于是拿来请教你。如果你做出来了, 他会请你吃饭。
答案对 1 0 9 + 7 10^9 + 7 109+7 取模。
输入输出格式
输入
一行三个正整数 n , R , K n, R, K n,R,K
输出
一个正整数, 表示答案。
输出输出扬样例
输入1
4 5 2
3 5 2
输出1
347916
输入2
94082 698 850
输出2
93954859
数据范围
对于10% 的数据, n , R , K ≤ 5 n, R, K ≤ 5 n,R,K≤5
对于30% 的数据, n , R ≤ 1 0 5 , K ≤ 200 n, R ≤ 10^5, K ≤ 200 n,R≤105,K≤200
对于另10% 的数据, n ≤ 1 0 18 , K ≤ 200 , R ≤ 1 0 5 n ≤ 10^{18}, K ≤ 200, R ≤ 10^5 n≤1018,K≤200,R≤105
对于另10% 的数据, n ≤ 1 0 18 , K ≤ 200 , R ≤ 1 0 18 n ≤ 10^{18}, K ≤ 200, R ≤ 10^{18} n≤1018,K≤200,R≤1018
对于另10% 的数据, n ≤ 1 0 18 , K ≤ 200 , R = 1 n ≤ 10^{18}, K ≤ 200, R = 1 n≤1018,K≤200,R=1
对于70% 的数据, n ≤ 1 0 18 , K ≤ 2000 , R ≤ 1 0 18 n ≤ 10^{18}, K ≤ 2000, R ≤ 10^{18} n≤1018,K≤2000,R≤1018
对于100% 的数据, n ≤ 1 0 18 , K ≤ 200000 , R ≤ 1 0 18 n ≤ 10^{18}, K ≤ 200000, R ≤ 10^{18} n≤1018,K≤200000,R≤1018
题解
解析
前置知识
-
∑ i = 1 n F i = F n + 2 − 1 \sum_{i=1}^nF_i=F_{n+2}-1 i=1∑nFi=Fn+2−1证明:数学归纳法
当 n = 1 n=1 n=1 时显然成立
假设 n = m n=m n=m 时此式子成立
∑ i = 1 m + 1 F i = ∑ i = 1 m F i + F m + 1 = F m + 2 + F m + 1 − 1 = F m + 3 − 1 \begin{aligned} &\sum_{i=1}^{m+1}F_i \\ =&\sum_{i=1}^mF_i+F_{m+1} \\ =&F_{m+2}+F_{m+1}-1 \\ =&F_{m+3}-1 \end{aligned} ===i=1∑m+1Fii=1∑mFi+Fm+1Fm+2+Fm+1−1Fm+3−1 -
m n = ∑ i = 1 m C m i × { n i } × i m^n=\sum_{i=1}^mC_m^{\;i}\times{{n}\brace{i}}\times i\! mn=i=1∑mCmi×{in}×i
根据小球与盒子相关例题可以轻松理解 -
拉格朗日插值
不会只会30分
现在开始正式推导~~(请耐心观看)~~
令 L = ∑ m = 1 R F m L=\sum^R_{m=1}F_m L=∑m=1RFm ,原式变为
∑ i = 1 n L ! × i ! × ∑ l = 0 i ∑ j = 0 L ( { K i − l } l ! × { i L − j } j ! ) = ∑ i = 1 n L ! × i ! × ( ∑ l = 0 i { K i − l } l ! ) × ( ∑ j = 0 L { i L − j } j ! ) = ∑ i = 1 n ( ∑ l = 0 i { K i − l } l ! × i ! ) × ( ∑ j = 0 L { i L − j } j ! × L ! ) = ∑ i = 1 n ( ∑ l = 0 i i ! l ! × { K i − l } ) × ( ∑ j = 0 L L ! j ! × { i L − j } ) \begin{aligned} &\sum_{i=1}^n L!\times i!\times \sum_{l=0}^i \sum_{j=0}^L\bigg(\frac{{K}\brace{i-l}}{l!}\times \frac{{i}\brace{L-j}}{j!}\bigg) \\ =&\sum_{i=1}^n L!\times i!\times\bigg(\sum_{l=0}^i\frac{{K}\brace{i-l}}{l!}\bigg)\times\bigg(\sum_{j=0}^L\frac{{i}\brace{L-j}}{j!}\bigg) \\ =&\sum_{i=1}^n\bigg(\sum_{l=0}^i\frac{{K}\brace{i-l}}{l!}\times i!\bigg)\times\bigg(\sum_{j=0}^L\frac{{i}\brace{L-j}}{j!}\times L!\bigg) \\ =&\sum_{i=1}^n\bigg(\sum_{l=0}^i\frac{i!}{l!}\times {{K}\brace{i-l}}\bigg) \times\bigg(\sum_{j=0}^L\frac{L!}{j!}\times {{i}\brace{L-j}}\bigg) \end{aligned} ===i=1∑nL!×i!×l=0∑ij=0∑L(l!{i−lK}×j!{L−ji})i=1∑nL!×i!×(l=0∑il!{i−lK})×(j=0∑Lj!{L−ji})i=1∑n(l=0∑il!{i−lK}×i!)×(j=0∑Lj!{L−ji}×L!)i=1∑n(l=0∑il!i!×{i−lK})×(j=0∑Lj!L!×{L−ji})我们假设 l , j l,j l,j 是倒着枚举的, 推为:
(也可以认为在枚举 l l l 的时候也会枚举到 i − l i-l i−l 的所有之)
= ∑ i = 1 n ( ∑ l = 0 i i ! ( i − l ) ! × { K l } ) × ( ∑ j = 0 L L ! ( L − j ) ! × { i j } ) = ∑ i = 1 n ( ∑ l = 0 i i ! ( i − l ) ! × l ! × { K l } × l ! ) × ( ∑ j = 0 L L ! ( L − j ) ! × j ! × { i j } × j ! ) = ∑ i = 1 n ( ∑ l = 0 i C i l × { K l } × l ! ) × ( ∑ j = 0 L C L j × { i j } × j ! ) = ∑ i = 1 n i k L i \begin{aligned} =&\sum_{i=1}^n\bigg(\sum_{l=0}^i\frac{i!}{(i-l)!}\times {{K}\brace{l}}\bigg) \times\bigg(\sum_{j=0}^L\frac{L!}{(L-j)!}\times {{i}\brace{j}}\bigg) \\ =&\sum_{i=1}^n\bigg(\sum_{l=0}^i\frac{i!}{(i-l)!\times l!}\times {{K}\brace{l}}\times l!\bigg) \times\bigg(\sum_{j=0}^L\frac{L!}{(L-j)!\times j!}\times {{i}\brace{j}}\times j!\bigg) \\ =&\sum_{i=1}^n\bigg(\sum_{l=0}^iC^l_i\times {{K}\brace{l}}\times l!\bigg) \times\bigg(\sum_{j=0}^LC^j_L\times {{i}\brace{j}}\times j!\bigg) \\ =&\sum_{i=1}^ni^kL^i \end{aligned} ====i=1∑n(l=0∑i(i−l)!i!×{lK})×(j=0∑L(L−j)!L!×{ji})i=1∑n(l=0∑i(i−l)!×l!i!×{lK}×l!)×(j=0∑L(L−j)!×j!L!×{ji}×j!)i=1∑n(l=0∑iCil×{lK}×l!)×(j=0∑LCLj×{ji}×j!)i=1∑nikLi
恭喜你 到这里你…
只能拿到30分
接下来是拉格朗日插值
明天补
相关文章:
SSY20241002提高组T4题解__纯数论
题面 题目描述 有一天 p e o p 1 e peop1e peop1e 学长梦到了一个丑陋的式子: ∑ i 1 n ( ∑ m 1 R F m ) ! i ! ∑ l 0 i ∑ j 0 ∑ t 1 R F t { K i − l } l ! { i ∑ w 1 R F w − j } j ! \sum_{i1}^n (\sum_{m1}^R F_m)!\times i!\times \sum_{l…...
Python:lambda 函数详解 以及使用
一、lambda 语法 lambda 函数的语法只包含一个语句,表现形式如下: lambda [arg1 [,arg2,.....argn]]:expression 其中,lambda 是 Python 预留的关键字,[arg…] 和 expression 由用户自定义。 具体如下: [arg…] 是参数列表&#…...

【C++】空指针和野指针
文章目录 1.空指针2.野指针总结 1.空指针 概念:指针变量指向内存中编号为0的空间。 用途:初始化指针变量。 注意:空指针指向的内存是不可以访问的。 示例: int main(){//指针变量p指向内存地址编号为0的空间int *PNULL&#…...
大模型提示词
纯输入版提示工程词 输出一个九九乘法口诀表 当然可以!以下是九九乘法口诀表: 1 x 1 1 1 x 2 2 2 x 2 4 1 x 3 3 2 x 3 6 3 x 3 9 1 x 4 4 2 x 4 8 3 x 4 12 4 x 4 16 1 x 5 5 2 x 5 10 3 x 5 15 4 x 5 20 5 …...

在线css像素px到Em的转换器
具体请前往:在线Px转Em工具--将绝对像素(px)长度单位转换为相对长度em...
回溯算法解决排列组合及子集问题
216. 组合总和 III39. 组合总和40. 组合总和 II46. 全排列47. 全排列 II77. 组合 78. 子集 90. 子集 II 以上是力扣设计相关问题的题目。排列组合还是子集问题无非就是从序列 nums 中以给定规则取若干元素,主要有以下几类: 元素无重不可复选࿰…...

Unity中Mesh多种网格绘制模式使用方法参考
Unity中MeshFilter中的Mesh默认情况下使用MeshTopology.Trigangles类型绘制网格,就是通常的绘制三角形网格,实际上Mesh有五种绘制模式,对应MeshTopology的枚举,分别是 Triangles网格由三角形构成。Quads网格由四边形构成。Lines网…...
【Spring Security】基于SpringBoot3.3.4版本②如何配置免鉴权Path
基于Spring Boot 3.3.4,详细说明Spring Security 6.3.3的使用 摘要本地开发环境说明SecurityFilterChain介绍application.ymlWen3SecurityProperties.java修改DemoWen3Security修改SecurityFilterChainIgnoredPathController.javaIgnoredPathController2.java启动工程测试测试…...

信息学奥赛复赛复习11-CSP-J2020-04方格取数-动态规划、斐波那契数列、最优子结构、重叠子问题、无后效性
PDF文档回复:20241004 1 P7074 [CSP-J2020] 方格取数 [题目描述] 设有 nm 的方格图,每个方格中都有一个整数。现有一只小熊,想从图的左上角走到右下角,每一步只能向上、向下或向右走一格,并且不能重复经过已经走过的方格&#x…...
Hive数仓操作(十二)
一、Hive 中的行列转换 1. 行转列: collect_list() collect_list() 函数用于将一个列中的数据收集成一个数组。 示例数据文件 假设有一个名为 orders.txt 的文件,内容如下: 1,101 1,101 1,103 2,104 2,105导入数据到 Hive 表 首先&…...

计算机毕业设计 基于SpringBoot和Vue的课程教学平台的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

有状态(Session) VS 无状态(Token)
目录 概念 JWT Token在项目中使用 概念 有状态和无状态服务是两种不同的服务架构,两者的不同之处在于对于服务状态的处理。 1、有状态服务 是指程序在执行过程中生成的中间数据,服务器端一般都要保存请求的相关信息,每个请求可以默认地使…...

天坑!Spark+Hive+Paimon+Dolphinscheduler
背景: 数据中台项目使用Spark+Hive+Paimon做湖仓底层,调度任务使用的是基于Dolphinscheduler进行二开。在做离线脚本任务开发时,在Paimon库下执行非查询类SQL报错。 INSERT报错 DELETE报错 现状: 原始逻辑为数据中台中选择的Paimon数据源,实际上在Dolphinscheduler中是…...

JAVA——IO框架
目录 一、框架 二、导入框架步骤 三、测试 一、框架 框架就是为了解决某类问题,编写的一套类、接口等。大多数框架都是第三方研发的 好处: 在框架的基础上开发,提高开发效率 框架的形式:一般是把类、接口编译成class形式,再…...

项目管理系统如何实现项目申报流程自动化?
传统的项目申报流程往往繁琐复杂,涉及众多环节和部门间的协作,不仅耗时费力,还容易因人为疏忽而导致错误或延误。随着信息技术的飞速发展,项目管理系统的出现为项目申报流程的自动化提供了可能,极大地提升了申报效率和…...

ndb9300public-ndb2excel简介
1 引言 ndb9300是一个自己定义的机载导航数据库劳作(不敢称为项目)代号,其中3表示是第3种数据库。 多年前,对在役民航客机中的某型机载导航数据库的二进制文件进行分析,弄明白它的数据结构后做了几个工具,…...
C++:const成员
const修饰成员变量,要在初始化列表中进行初始化。 const修饰成员函数,要放在函数后,称为常函数。常函数不能修改普通成员变量。 const修饰的对象,称为常对象。常对象不能修改普通成员变量,只能读取。 常对象只能使用…...

基于ROS的激光雷达点云物体检测
环境 RTX 2060(后面关于算力) ubuntu 18.04 ROS melodic (ubuntu 18.04安装ROS melodic可以参看我这篇文章ubuntu 18.04安装ROS系统) CUDA 10.0 cudnn 7.6.5 caffe cmake 3.18.0(不能低于3.12.2) opencv 3…...

大模型训练环境搭建
硬件资源说明 本教程基于GPU 3090的服务器 资源类型 型号 核心指标 CPU Intel(R) Xeon(R) Bronze 3204 CPU 1.90GHz 12核 内存 / 125Gi GPU NVIDIA GeForce RTX 3090 24G显存 注意:接下来的部分命令需要使用科学上网,需要事先配置好。 安…...

使用Java调用GeoTools实现全球国家矢量数据入库实战
目录 前言 一、相关数据介绍 1、无空间参考的数据 2、有空间参考的数据 3、空间信息表物理模型 二、全球国家空间数据入库 1、后台实体类图 2、后台实体对象关键代码 三、时空数据入库实践 1、读取无空间参考数据 2、入库成果及注意事项 四、总结 前言 在当今世界&…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...