【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)
4. 微分
4.3 导数四则运算与反函数求导法则
双曲正弦函数 sh x = e x − e − x 2 \sh x=\frac{e^x-e^{-x}}{2} shx=2ex−e−x
双曲余弦函数 ch x = e x + e − x 2 \ch x=\frac{e^x+e^{-x}}{2} chx=2ex+e−x
ch 2 x − sh 2 x = 1 \ch^2 x-\sh^2 x=1 ch2x−sh2x=1
( e − x ) ′ = ( 1 e x ) ′ = − e x e 2 x = − e − x (e^{-x})'=(\frac{1}{e^x})'=-\frac{e^x}{e^{2x}}=-e^{-x} (e−x)′=(ex1)′=−e2xex=−e−x
( sh x ) ′ = 1 2 ( e x + e − x = ch x ) (\sh x)'=\frac{1}{2}(e^x+e^{-x}=\ch x) (shx)′=21(ex+e−x=chx)
同理 ( ch x ) ′ = sh x (\ch x)' = \sh x (chx)′=shx
双曲正切函数 th x = sh x ch x \th x=\frac{\sh x}{\ch x} thx=chxshx
双曲余切函数 cth x = ch x sh x \cth x=\frac{\ch x}{\sh x} cthx=shxchx
( th x ) ′ = ch 2 x − sh 2 x ch 2 x = 1 ch 2 x = sech 2 x (\th x)'=\frac{\ch^2 x-\sh^2 x}{\ch^2 x}=\frac{1}{\ch^2 x}=\text{sech}^2 x (thx)′=ch2xch2x−sh2x=ch2x1=sech2x
同理 ( cth x ) ′ = csch 2 x (\cth x)'=\text{csch}^2 x (cthx)′=csch2x
( sh − 1 x ) = 1 ( sh y ) ′ = 1 ch y = 1 1 + sh 2 y = 1 1 + x 2 (\sh^{-1} x)=\frac{1}{(\sh y)'}=\frac{1}{\ch y}=\frac{1}{\sqrt{1+\sh ^2 y}}=\frac{1}{\sqrt{1+x^2}} (sh−1x)=(shy)′1=chy1=1+sh2y1=1+x21
同理 ( ch − 1 x ) ′ = 1 x 2 − 1 (\ch^{-1} x)'=\frac{1}{\sqrt{x^2-1}} (ch−1x)′=x2−11
( th − 1 x ) ′ = ( cth − 1 x ) = 1 1 − x 2 (\th^{-1} x)'=(\cth^{-1} x)=\frac{1}{1-x^2} (th−1x)′=(cth−1x)=1−x21
4.3.3 基本初等函数的导数公式
( C ) ′ = 0 d ( C ) = 0 ⋅ d x = 0 ( x α ) ′ = α x α − 1 d ( x α ) = α x α − 1 d x ( sin x ) ′ = cos x d ( sin x ) = cos x d x ( cos x ) ′ = − sin x d ( cos x ) = − sin x d x ( tan x ) ′ = sec 2 x d ( tan x ) = sec 2 x d x ( cot x ) ′ = − csc 2 x d ( cot x ) = − csc 2 x d x ( sec x ) ′ = tan x sec x d ( sec x ) = tan x sec x d x ( csc x ) ′ = − cot x csc x d ( csc x ) = − cot x csc x d x ( arcsin x ) ′ = 1 1 − x 2 d ( arcsin x ) = d x 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 d ( arccos x ) = − d x 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 ( a x ) ′ = ln a ⋅ a x 特别地 ( e x ) ′ = e x ( log a x ) ′ = 1 ln a ⋅ 1 x 特别地 ( ln x ) ′ = 1 x ( sh x ) ′ = ch x ( ch x ) ′ = sh x ( th x ) ′ = sech 2 x ( cth x ) ′ = − csch 2 x ( sh − 1 x ) ′ = 1 1 + x 2 ( ch − 1 x ) ′ = 1 x 2 − 1 d ( arctan x ) = d x 1 + x 2 ( th − 1 x ) ′ = ( cth − 1 x ) ′ = 1 1 − x 2 d ( arccot x ) = − d x 1 + x 2 d ( a x ) = ln a ⋅ a x d x 特别地 d ( e x ) = e x d x d ( log a x ) = 1 ln a ⋅ d x x 特别地 d ( ln x ) = d x x d ( sh x ) = ch x d x d ( ch x ) = sh x d x d ( th x ) = sech 2 x d x d ( cth x ) = − csch 2 x d x d ( sh − 1 x ) = d x 1 + x 2 d ( ch − 1 x ) = d x x 2 − 1 d ( th − 1 x ) = d ( cth − 1 x ) = d x 1 − x 2 \begin{array}{l} (C)^{\prime}=0 \\ \mathrm{~d}(C)=0 \cdot \mathrm{~d} x=0 \\ \left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \\ \mathrm{~d}\left(x^{\alpha}\right)=\alpha x^{\alpha-1} \mathrm{~d} x \\ (\sin x)^{\prime}=\cos x \\ \mathrm{~d}(\sin x)=\cos x \mathrm{~d} x \\ (\cos x)^{\prime}=-\sin x \\ \mathrm{~d}(\cos x)=-\sin x \mathrm{~d} x \\ (\tan x)^{\prime}=\sec ^{2} x \\ \mathrm{~d}(\tan x)=\sec ^{2} x \mathrm{~d} x \\ (\cot x)^{\prime}=-\csc ^{2} x \\ \mathrm{~d}(\cot x)=-\csc ^{2} x \mathrm{~d} x \\ (\sec x)^{\prime}=\tan x \sec x \\ \mathrm{~d}(\sec x)=\tan x \sec x \mathrm{~d} x \\ (\csc x)^{\prime}=-\cot x \csc x \\ \mathrm{~d}(\csc x)=-\cot x \csc x \mathrm{~d} x \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\ \mathrm{~d}(\arcsin x)=\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad \mathrm{~d}(\arccos x)=-\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arctan x)^{\prime}=\frac{1}{1+x^{2}} \\ (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \\ \left(a^{x}\right)^{\prime}=\ln a \cdot a^{x} \\ \text { 特别地 }\left(e^{x}\right)^{\prime}=e^{x} \\ \left(\log _{a} x\right)^{\prime}=\frac{1}{\ln a} \cdot \frac{1}{x} \\ \text { 特别地 }(\ln x)^{\prime}=\frac{1}{x} \\ (\operatorname{sh} x)^{\prime}=\operatorname{ch} x \\ (\operatorname{ch} x)^{\prime}=\operatorname{sh} x \\ (\text { th } x)^{\prime}=\operatorname{sech}^{2} x \\ (\operatorname{cth} x)^{\prime}=-\operatorname{csch}^{2} x \\ \left(\operatorname{sh}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1+x^{2}}} \\ \left(\operatorname{ch}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{x^{2}-1}} \\ \mathrm{~d}(\arctan x)=\frac{\mathrm{d} x}{1+x^{2}} \\ \left(\operatorname{th}^{-1} x\right)^{\prime}=\left(\operatorname{cth}^{-1} x\right)^{\prime}=\frac{1}{1-x^{2}} \\ \mathrm{~d}(\operatorname{arccot} x)=-\frac{\mathrm{d} x}{1+x^{2}} \\ \mathrm{~d}\left(a^{x}\right)=\ln a \cdot a^{x} \mathrm{~d} x \\ \text { 特别地 } d\left(e^{x}\right)=e^{x} d x \\ \mathrm{~d}\left(\log _{a} x\right)=\frac{1}{\ln a} \cdot \frac{\mathrm{~d} x}{x} \\ \text { 特别地 } \mathrm{d}(\ln x)=\frac{\mathrm{d} x}{x} \\ \mathrm{~d}(\operatorname{sh} x)=\operatorname{ch} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{ch} x)=\operatorname{sh} x \mathrm{~d} x \\ \mathrm{~d}(\text { th } x)=\operatorname{sech}^{2} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{cth} x)=-\operatorname{csch}^{2} x \mathrm{~d} x \\ \mathrm{~d}\left(\operatorname{sh}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{1+x^{2}}} \\ \mathrm{~d}\left(\operatorname{ch}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{x^{2}-1}} \\ \mathrm{~d}\left(\operatorname{th}^{-1} x\right)=\mathrm{d}\left(\operatorname{cth}^{-1} x\right)=\frac{\mathrm{d} x}{1-x^{2}} \end{array} (C)′=0 d(C)=0⋅ dx=0(xα)′=αxα−1 d(xα)=αxα−1 dx(sinx)′=cosx d(sinx)=cosx dx(cosx)′=−sinx d(cosx)=−sinx dx(tanx)′=sec2x d(tanx)=sec2x dx(cotx)′=−csc2x d(cotx)=−csc2x dx(secx)′=tanxsecx d(secx)=tanxsecx dx(cscx)′=−cotxcscx d(cscx)=−cotxcscx dx(arcsinx)′=1−x21 d(arcsinx)=1−x2dx(arccosx)′=−1−x21 d(arccosx)=−1−x2dx(arctanx)′=1+x21(arccotx)′=−1+x21(ax)′=lna⋅ax 特别地 (ex)′=ex(logax)′=lna1⋅x1 特别地 (lnx)′=x1(shx)′=chx(chx)′=shx( th x)′=sech2x(cthx)′=−csch2x(sh−1x)′=1+x21(ch−1x)′=x2−11 d(arctanx)=1+x2dx(th−1x)′=(cth−1x)′=1−x21 d(arccotx)=−1+x2dx d(ax)=lna⋅ax dx 特别地 d(ex)=exdx d(logax)=lna1⋅x dx 特别地 d(lnx)=xdx d(shx)=chx dx d(chx)=shx dx d( th x)=sech2x dx d(cthx)=−csch2x dx d(sh−1x)=1+x2dx d(ch−1x)=x2−1dx d(th−1x)=d(cth−1x)=1−x2dx
【注】(1) [ ∑ i = 1 n c i f i ( x ) ] ′ = ∑ i = 1 n c i f ′ i ( x ) \left[\sum\limits_{i=1}^{n} c_{i} f_{i}(x)\right]^{\prime}=\sum\limits_{i=1}^{n} c_{i} f^{\prime}{ }_{i}(x) [i=1∑ncifi(x)]′=i=1∑ncif′i(x),其中 c i ( i = 1 , 2 , ⋯ , n ) c_{i}(i=1,2, \cdots, n) ci(i=1,2,⋯,n)为常数;
(2) [ ∏ i = 1 n f i ( x ) ] ′ = ∑ j = 1 n { f j ′ ( x ) ∏ i = 1 , i ≠ j n f i ( x ) } \left[\prod\limits_{i=1}^{n} f_{i}(x)\right]^{\prime}=\sum\limits_{j=1}^{n}\left\{f^{\prime}_{j}(x) \prod\limits_{i=1,i\ne j}^{n} f_{i}(x)\right\} [i=1∏nfi(x)]′=j=1∑n{fj′(x)i=1,i=j∏nfi(x)}(每一项是有一个因式的函数求导,其他不求导,然后相乘)
【例4.3.12】 y = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 y=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 y=anxn+an−1xn−1+...+a1x+a0,求 y ′ y' y′.
【解】 y ′ = n a n x n − 1 + ( n − 1 ) a n − 1 x n − 2 + . . . + a 1 y' = na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1 y′=nanxn−1+(n−1)an−1xn−2+...+a1
【例4.3.13】 y = e x ( x 2 + 3 x − 1 ) arcsin x y=e^x(x^2+3x-1)\arcsin x y=ex(x2+3x−1)arcsinx,求 y ′ y' y′.
【解】 y ′ = e x ( x 2 + 3 x − 1 ) arcsin x + e x ( 2 x + 3 ) arcsin x + e x ( x 2 + 3 x − 1 ) 1 1 − x 2 = e x ( ( x 2 + 5 x + 2 ) arcsin x + x 2 + 3 x − 1 1 − x 2 ) y'=e^x(x^2+3x-1)\arcsin x+ e^x(2x+3)\arcsin x + e^x(x^2+3x-1)\frac{1}{\sqrt{1-x^2}}=e^x((x^2+5x+2)\arcsin x+\frac{x^2+3x-1}{\sqrt{1-x^2}}) y′=ex(x2+3x−1)arcsinx+ex(2x+3)arcsinx+ex(x2+3x−1)1−x21=ex((x2+5x+2)arcsinx+1−x2x2+3x−1)
相关文章:
【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)
4. 微分 4.3 导数四则运算与反函数求导法则 双曲正弦函数 sh x e x − e − x 2 \sh x\frac{e^x-e^{-x}}{2} shx2ex−e−x 双曲余弦函数 ch x e x e − x 2 \ch x\frac{e^xe^{-x}}{2} chx2exe−x ch 2 x − sh 2 x 1 \ch^2 x-\sh^2 x1 ch2x−sh2x1 ( e…...
【2024】基于mysqldump的数据备份与恢复
基于mysqldump备份与恢复 mysqldump是一个用于备份 MySQL 数据库的实用工具。 它可以将数据库的结构(如数据库、表、视图、存储过程等的定义)和数据(表中的记录)导出为文本文件,这些文本文件可以包含 SQL 语句&#…...
家用无线路由器配置
一.首先进行线路连接。如下图:"光猫LAN口"—网线—"路由器WAN口"。 注意:家用光纤宽带一般选择使用200兆宽带到1000兆,如果网速不达标请查看路由器是否是千兆路由器。千兆路由器通常是双频的,支持两个信号一个…...
模拟算法(4)_外观数列
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 模拟算法(4)_外观数列 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 1. 题目链…...
vsomeip用到的socket
概述: vsomeip用到的socket的代码全部都在implementation\endpoints目录下面,主要分布在下面六个endpoint类中: local_client_endpoint_impl // 本地客户端socket(UDS Socket或者127.0.0.1的socket)local_server…...
MFC有三个选项:MFC ActiveX控件、MFC应用程序、MFC DLL,如何选择?
深耕AI:互联网行业 算法研发工程师 目录 MFC ActiveX 控件 控件的类型 标准控件 自定义控件 ActiveX控件 MFC ActiveX控件 标准/自定义控件 MFC ActiveX控件分类 3种MFC如何选择? MFC ActiveX控件 MFC 应用程序 MFC DLL 总结 举例说明…...
边缘概率 | 条件概率
关于什么是边缘概率分布和条件概率分布,在理论上,我自己也还没有理解,那么现在就根据我学习到的理解方式来记录一下,有错误指出,请大家指正!!! 例如,一个箱子里有十个乒乓…...
深入浅出:现代JavaScript开发者必知必会的Web性能优化技巧
亲爱的读者们,欢迎来到本期博客。今天,我们将深入探讨JavaScript开发者在日常工作中如何提升Web性能。在快节奏的Web开发世界中,性能优化至关重要。本文将分享一些实用技巧,帮助你构建快速、高效的Web应用。 1. 使用CDN加速资源加…...
【S32K3 RTD LLD篇5】K344 ADC SW+HW trigger
【S32K3 RTD LLD篇5】K344 ADC SWHW trigger 一,文档简介二,ADC SW HW 触发2.1 软硬件平台2.2 SWADC 软件触发2.3 SWBCTUADC 软件BCTU触发2.4 PITTRIGMUXADC 硬件PIT TRIGUMX触发2.5 EMIOSBCTUHWADC硬件EMIOS BCTU触发2.6 EMIOSBCTUHW LISTADC硬件EMIOS …...
TransFormer 视频笔记
TransFormer BasicsAttention单头注意力 single head attentionQ: query 查寻矩阵 128*12288K key matrix 128*12288SoftMax 归一 Value matrix 12288*12288 MLP Bas…...
前端的混合全栈之路Meteor篇(三):发布订阅示例代码及如何将Meteor的响应数据映射到vue3的reactive系统
Meteor 3.0 是一个功能强大的全栈 JavaScript 框架,特别适合实时应用程序的开发。它的核心机制之一就包括发布-订阅(Publish-Subscribe)模型,它允许服务器端发布数据,客户端订阅并实时更新。本文将介绍如何在 Meteor 3…...
自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...
Webstorm 中对 Node.js 后端项目进行断点调试
首先,肯定需要有一个启动服务器的命令脚本。 然后,写一个 debug 的配置: 然后,debug 模式 启动项目和 启动调试服务: 最后,发送请求,即可调试: 这几个关键按钮含义: 重启…...
VUE前后端分离毕业设计题目项目有哪些,VUE程序开发常见毕业论文设计推荐
目录 0 为什么选择Vue.js 1 Vue.js 的主要特点 2 前后端分离毕业设计项目推荐 3 后端推荐 4 总结 0 为什么选择Vue.js 使用Vue.js开发计算机毕业设计是一个很好的选择,因为它不仅具有现代前端框架的所有优点,还能让你专注于构建高性能、高可用性的W…...
一、Spring Boot集成Spring Security之自动装配
Spring Boot集成Spring Security之自动装配介绍 一、实现功能及软件版本说明二、创建Spring Boot项目三、查看自动装配配置类四、自动装配配置类之SecurityAutoConfiguration1、SecurityAutoConfiguration部分源码2、主要作用3、SpringBootWebSecurityConfiguration3.1、Spring…...
计数相关的题 Python 力扣
2284. 最多单词数的发件人 给你一个聊天记录,共包含 n 条信息。给你两个字符串数组 messages 和 senders ,其中 messages[i] 是 senders[i] 发出的一条 信息 。 一条 信息 是若干用单个空格连接的 单词 ,信息开头和结尾不会有多余空格。发件…...
Express内置的中间件(express.json和express.urlencoded)格式的请求体数据
目录 Express内置的中间件 express.json 中间件的使用 express.urlencoded 中间件的使用 express.urlencoded([options]) 解析req.body的兼容写法 Express内置的中间件 自 Express 4.16.0 版本开始,Express 内置了 3 个常用的中间件,极大的提高了 …...
cmakelist加载Qt模块
Qt编程中,cmakelist会自动添加Core,Gui,Widgets模块,有时需要添加新的Qt的模块。在命令find_package中搜索要新增的模块,在命令target_link_libraries中添加要新增的模块。 比如要使用QUiLoader类,要增加对…...
8-2.Android 任务之 CountDownTimer 编码模板(开启计时器、取消计时器)
一、CountDownTimer 1、概述 CountDownTimer 是 Android 中一个用于执行定时操作的类 CountDownTimer 主要应用于在指定时间段内完成某项任务,或者每隔一段时间触发某项任务 2、使用步骤 创建 CountDownTimer:创建 CountDownTimer 就是创建它的匿名…...
Servlet的生命周期及用户提交表单页面的实现(实验报告)
一、实验目的、要求 1. 掌握Servlet的定义,即Servlet是运行在服务器端的Java程序,用于扩展服务器的功能。 2. 学习和掌握在开发环境中搭建Servlet应用所需的工具,如Tomcat服务器、IDEA等。 二、实验内容 根据本章所学知识,实验…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
Appium下载安装配置保姆教程(图文详解)
目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...
