当前位置: 首页 > news >正文

【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)

4. 微分

4.3 导数四则运算与反函数求导法则

双曲正弦函数 sh ⁡ x = e x − e − x 2 \sh x=\frac{e^x-e^{-x}}{2} shx=2exex
双曲余弦函数 ch ⁡ x = e x + e − x 2 \ch x=\frac{e^x+e^{-x}}{2} chx=2ex+ex
ch ⁡ 2 x − sh ⁡ 2 x = 1 \ch^2 x-\sh^2 x=1 ch2xsh2x=1
( e − x ) ′ = ( 1 e x ) ′ = − e x e 2 x = − e − x (e^{-x})'=(\frac{1}{e^x})'=-\frac{e^x}{e^{2x}}=-e^{-x} (ex)=(ex1)=e2xex=ex
( sh ⁡ x ) ′ = 1 2 ( e x + e − x = ch ⁡ x ) (\sh x)'=\frac{1}{2}(e^x+e^{-x}=\ch x) (shx)=21(ex+ex=chx)
同理 ( ch ⁡ x ) ′ = sh ⁡ x (\ch x)' = \sh x (chx)=shx
双曲正切函数 th ⁡ x = sh ⁡ x ch ⁡ x \th x=\frac{\sh x}{\ch x} thx=chxshx
双曲余切函数 cth ⁡ x = ch ⁡ x sh ⁡ x \cth x=\frac{\ch x}{\sh x} cthx=shxchx
( th ⁡ x ) ′ = ch ⁡ 2 x − sh ⁡ 2 x ch ⁡ 2 x = 1 ch ⁡ 2 x = sech 2 x (\th x)'=\frac{\ch^2 x-\sh^2 x}{\ch^2 x}=\frac{1}{\ch^2 x}=\text{sech}^2 x (thx)=ch2xch2xsh2x=ch2x1=sech2x
同理 ( cth ⁡ x ) ′ = csch 2 x (\cth x)'=\text{csch}^2 x (cthx)=csch2x
( sh ⁡ − 1 x ) = 1 ( sh ⁡ y ) ′ = 1 ch ⁡ y = 1 1 + sh ⁡ 2 y = 1 1 + x 2 (\sh^{-1} x)=\frac{1}{(\sh y)'}=\frac{1}{\ch y}=\frac{1}{\sqrt{1+\sh ^2 y}}=\frac{1}{\sqrt{1+x^2}} (sh1x)=(shy)1=chy1=1+sh2y 1=1+x2 1
同理 ( ch ⁡ − 1 x ) ′ = 1 x 2 − 1 (\ch^{-1} x)'=\frac{1}{\sqrt{x^2-1}} (ch1x)=x21 1
( th ⁡ − 1 x ) ′ = ( cth ⁡ − 1 x ) = 1 1 − x 2 (\th^{-1} x)'=(\cth^{-1} x)=\frac{1}{1-x^2} (th1x)=(cth1x)=1x21

4.3.3 基本初等函数的导数公式

( C ) ′ = 0 d ( C ) = 0 ⋅ d x = 0 ( x α ) ′ = α x α − 1 d ( x α ) = α x α − 1 d x ( sin ⁡ x ) ′ = cos ⁡ x d ( sin ⁡ x ) = cos ⁡ x d x ( cos ⁡ x ) ′ = − sin ⁡ x d ( cos ⁡ x ) = − sin ⁡ x d x ( tan ⁡ x ) ′ = sec ⁡ 2 x d ( tan ⁡ x ) = sec ⁡ 2 x d x ( cot ⁡ x ) ′ = − csc ⁡ 2 x d ( cot ⁡ x ) = − csc ⁡ 2 x d x ( sec ⁡ x ) ′ = tan ⁡ x sec ⁡ x d ( sec ⁡ x ) = tan ⁡ x sec ⁡ x d x ( csc ⁡ x ) ′ = − cot ⁡ x csc ⁡ x d ( csc ⁡ x ) = − cot ⁡ x csc ⁡ x d x ( arcsin ⁡ x ) ′ = 1 1 − x 2 d ( arcsin ⁡ x ) = d x 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 d ( arccos ⁡ x ) = − d x 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot ⁡ x ) ′ = − 1 1 + x 2 ( a x ) ′ = ln ⁡ a ⋅ a x 特别地  ( e x ) ′ = e x ( log ⁡ a x ) ′ = 1 ln ⁡ a ⋅ 1 x 特别地  ( ln ⁡ x ) ′ = 1 x ( sh ⁡ x ) ′ = ch ⁡ x ( ch ⁡ x ) ′ = sh ⁡ x ( th  x ) ′ = sech ⁡ 2 x ( cth ⁡ x ) ′ = − csch ⁡ 2 x ( sh ⁡ − 1 x ) ′ = 1 1 + x 2 ( ch ⁡ − 1 x ) ′ = 1 x 2 − 1 d ( arctan ⁡ x ) = d x 1 + x 2 ( th ⁡ − 1 x ) ′ = ( cth ⁡ − 1 x ) ′ = 1 1 − x 2 d ( arccot ⁡ x ) = − d x 1 + x 2 d ( a x ) = ln ⁡ a ⋅ a x d x 特别地  d ( e x ) = e x d x d ( log ⁡ a x ) = 1 ln ⁡ a ⋅ d x x 特别地  d ( ln ⁡ x ) = d x x d ( sh ⁡ x ) = ch ⁡ x d x d ( ch ⁡ x ) = sh ⁡ x d x d ( th  x ) = sech ⁡ 2 x d x d ( cth ⁡ x ) = − csch ⁡ 2 x d x d ( sh ⁡ − 1 x ) = d x 1 + x 2 d ( ch ⁡ − 1 x ) = d x x 2 − 1 d ( th ⁡ − 1 x ) = d ( cth ⁡ − 1 x ) = d x 1 − x 2 \begin{array}{l} (C)^{\prime}=0 \\ \mathrm{~d}(C)=0 \cdot \mathrm{~d} x=0 \\ \left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \\ \mathrm{~d}\left(x^{\alpha}\right)=\alpha x^{\alpha-1} \mathrm{~d} x \\ (\sin x)^{\prime}=\cos x \\ \mathrm{~d}(\sin x)=\cos x \mathrm{~d} x \\ (\cos x)^{\prime}=-\sin x \\ \mathrm{~d}(\cos x)=-\sin x \mathrm{~d} x \\ (\tan x)^{\prime}=\sec ^{2} x \\ \mathrm{~d}(\tan x)=\sec ^{2} x \mathrm{~d} x \\ (\cot x)^{\prime}=-\csc ^{2} x \\ \mathrm{~d}(\cot x)=-\csc ^{2} x \mathrm{~d} x \\ (\sec x)^{\prime}=\tan x \sec x \\ \mathrm{~d}(\sec x)=\tan x \sec x \mathrm{~d} x \\ (\csc x)^{\prime}=-\cot x \csc x \\ \mathrm{~d}(\csc x)=-\cot x \csc x \mathrm{~d} x \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\ \mathrm{~d}(\arcsin x)=\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad \mathrm{~d}(\arccos x)=-\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arctan x)^{\prime}=\frac{1}{1+x^{2}} \\ (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \\ \left(a^{x}\right)^{\prime}=\ln a \cdot a^{x} \\ \text { 特别地 }\left(e^{x}\right)^{\prime}=e^{x} \\ \left(\log _{a} x\right)^{\prime}=\frac{1}{\ln a} \cdot \frac{1}{x} \\ \text { 特别地 }(\ln x)^{\prime}=\frac{1}{x} \\ (\operatorname{sh} x)^{\prime}=\operatorname{ch} x \\ (\operatorname{ch} x)^{\prime}=\operatorname{sh} x \\ (\text { th } x)^{\prime}=\operatorname{sech}^{2} x \\ (\operatorname{cth} x)^{\prime}=-\operatorname{csch}^{2} x \\ \left(\operatorname{sh}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1+x^{2}}} \\ \left(\operatorname{ch}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{x^{2}-1}} \\ \mathrm{~d}(\arctan x)=\frac{\mathrm{d} x}{1+x^{2}} \\ \left(\operatorname{th}^{-1} x\right)^{\prime}=\left(\operatorname{cth}^{-1} x\right)^{\prime}=\frac{1}{1-x^{2}} \\ \mathrm{~d}(\operatorname{arccot} x)=-\frac{\mathrm{d} x}{1+x^{2}} \\ \mathrm{~d}\left(a^{x}\right)=\ln a \cdot a^{x} \mathrm{~d} x \\ \text { 特别地 } d\left(e^{x}\right)=e^{x} d x \\ \mathrm{~d}\left(\log _{a} x\right)=\frac{1}{\ln a} \cdot \frac{\mathrm{~d} x}{x} \\ \text { 特别地 } \mathrm{d}(\ln x)=\frac{\mathrm{d} x}{x} \\ \mathrm{~d}(\operatorname{sh} x)=\operatorname{ch} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{ch} x)=\operatorname{sh} x \mathrm{~d} x \\ \mathrm{~d}(\text { th } x)=\operatorname{sech}^{2} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{cth} x)=-\operatorname{csch}^{2} x \mathrm{~d} x \\ \mathrm{~d}\left(\operatorname{sh}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{1+x^{2}}} \\ \mathrm{~d}\left(\operatorname{ch}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{x^{2}-1}} \\ \mathrm{~d}\left(\operatorname{th}^{-1} x\right)=\mathrm{d}\left(\operatorname{cth}^{-1} x\right)=\frac{\mathrm{d} x}{1-x^{2}} \end{array} (C)=0 d(C)=0 dx=0(xα)=αxα1 d(xα)=αxα1 dx(sinx)=cosx d(sinx)=cosx dx(cosx)=sinx d(cosx)=sinx dx(tanx)=sec2x d(tanx)=sec2x dx(cotx)=csc2x d(cotx)=csc2x dx(secx)=tanxsecx d(secx)=tanxsecx dx(cscx)=cotxcscx d(cscx)=cotxcscx dx(arcsinx)=1x2 1 d(arcsinx)=1x2 dx(arccosx)=1x2 1 d(arccosx)=1x2 dx(arctanx)=1+x21(arccotx)=1+x21(ax)=lnaax 特别地 (ex)=ex(logax)=lna1x1 特别地 (lnx)=x1(shx)=chx(chx)=shx( th x)=sech2x(cthx)=csch2x(sh1x)=1+x2 1(ch1x)=x21 1 d(arctanx)=1+x2dx(th1x)=(cth1x)=1x21 d(arccotx)=1+x2dx d(ax)=lnaax dx 特别地 d(ex)=exdx d(logax)=lna1x dx 特别地 d(lnx)=xdx d(shx)=chx dx d(chx)=shx dx d( th x)=sech2x dx d(cthx)=csch2x dx d(sh1x)=1+x2 dx d(ch1x)=x21 dx d(th1x)=d(cth1x)=1x2dx
【注】(1) [ ∑ i = 1 n c i f i ( x ) ] ′ = ∑ i = 1 n c i f ′ i ( x ) \left[\sum\limits_{i=1}^{n} c_{i} f_{i}(x)\right]^{\prime}=\sum\limits_{i=1}^{n} c_{i} f^{\prime}{ }_{i}(x) [i=1ncifi(x)]=i=1ncifi(x),其中 c i ( i = 1 , 2 , ⋯ , n ) c_{i}(i=1,2, \cdots, n) ci(i=1,2,,n)为常数;
(2) [ ∏ i = 1 n f i ( x ) ] ′ = ∑ j = 1 n { f j ′ ( x ) ∏ i = 1 , i ≠ j n f i ( x ) } \left[\prod\limits_{i=1}^{n} f_{i}(x)\right]^{\prime}=\sum\limits_{j=1}^{n}\left\{f^{\prime}_{j}(x) \prod\limits_{i=1,i\ne j}^{n} f_{i}(x)\right\} [i=1nfi(x)]=j=1n{fj(x)i=1,i=jnfi(x)}(每一项是有一个因式的函数求导,其他不求导,然后相乘)


【例4.3.12】 y = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 y=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 y=anxn+an1xn1+...+a1x+a0,求 y ′ y' y.
【解】 y ′ = n a n x n − 1 + ( n − 1 ) a n − 1 x n − 2 + . . . + a 1 y' = na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1 y=nanxn1+(n1)an1xn2+...+a1


【例4.3.13】 y = e x ( x 2 + 3 x − 1 ) arcsin ⁡ x y=e^x(x^2+3x-1)\arcsin x y=ex(x2+3x1)arcsinx,求 y ′ y' y.
【解】 y ′ = e x ( x 2 + 3 x − 1 ) arcsin ⁡ x + e x ( 2 x + 3 ) arcsin ⁡ x + e x ( x 2 + 3 x − 1 ) 1 1 − x 2 = e x ( ( x 2 + 5 x + 2 ) arcsin ⁡ x + x 2 + 3 x − 1 1 − x 2 ) y'=e^x(x^2+3x-1)\arcsin x+ e^x(2x+3)\arcsin x + e^x(x^2+3x-1)\frac{1}{\sqrt{1-x^2}}=e^x((x^2+5x+2)\arcsin x+\frac{x^2+3x-1}{\sqrt{1-x^2}}) y=ex(x2+3x1)arcsinx+ex(2x+3)arcsinx+ex(x2+3x1)1x2 1=ex((x2+5x+2)arcsinx+1x2 x2+3x1)

相关文章:

【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)

4. 微分 4.3 导数四则运算与反函数求导法则 双曲正弦函数 sh ⁡ x e x − e − x 2 \sh x\frac{e^x-e^{-x}}{2} shx2ex−e−x​ 双曲余弦函数 ch ⁡ x e x e − x 2 \ch x\frac{e^xe^{-x}}{2} chx2exe−x​ ch ⁡ 2 x − sh ⁡ 2 x 1 \ch^2 x-\sh^2 x1 ch2x−sh2x1 ( e…...

【2024】基于mysqldump的数据备份与恢复

基于mysqldump备份与恢复 mysqldump是一个用于备份 MySQL 数据库的实用工具。 它可以将数据库的结构(如数据库、表、视图、存储过程等的定义)和数据(表中的记录)导出为文本文件,这些文本文件可以包含 SQL 语句&#…...

家用无线路由器配置

一.首先进行线路连接。如下图:"光猫LAN口"—网线—"路由器WAN口"。 注意:家用光纤宽带一般选择使用200兆宽带到1000兆,如果网速不达标请查看路由器是否是千兆路由器。千兆路由器通常是双频的,支持两个信号一个…...

模拟算法(4)_外观数列

个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 模拟算法(4)_外观数列 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 1. 题目链…...

vsomeip用到的socket

概述: ​ vsomeip用到的socket的代码全部都在implementation\endpoints目录下面,主要分布在下面六个endpoint类中: local_client_endpoint_impl // 本地客户端socket(UDS Socket或者127.0.0.1的socket)local_server…...

MFC有三个选项:MFC ActiveX控件、MFC应用程序、MFC DLL,如何选择?

深耕AI:互联网行业 算法研发工程师 ​ 目录 MFC ActiveX 控件 控件的类型 标准控件 自定义控件 ActiveX控件 MFC ActiveX控件 标准/自定义控件 MFC ActiveX控件分类 3种MFC如何选择? MFC ActiveX控件 MFC 应用程序 MFC DLL 总结 举例说明…...

边缘概率 | 条件概率

关于什么是边缘概率分布和条件概率分布,在理论上,我自己也还没有理解,那么现在就根据我学习到的理解方式来记录一下,有错误指出,请大家指正!!! 例如,一个箱子里有十个乒乓…...

深入浅出:现代JavaScript开发者必知必会的Web性能优化技巧

亲爱的读者们,欢迎来到本期博客。今天,我们将深入探讨JavaScript开发者在日常工作中如何提升Web性能。在快节奏的Web开发世界中,性能优化至关重要。本文将分享一些实用技巧,帮助你构建快速、高效的Web应用。 1. 使用CDN加速资源加…...

【S32K3 RTD LLD篇5】K344 ADC SW+HW trigger

【S32K3 RTD LLD篇5】K344 ADC SWHW trigger 一,文档简介二,ADC SW HW 触发2.1 软硬件平台2.2 SWADC 软件触发2.3 SWBCTUADC 软件BCTU触发2.4 PITTRIGMUXADC 硬件PIT TRIGUMX触发2.5 EMIOSBCTUHWADC硬件EMIOS BCTU触发2.6 EMIOSBCTUHW LISTADC硬件EMIOS …...

TransFormer 视频笔记

TransFormer BasicsAttention单头注意力 single head attentionQ: query 查寻矩阵 128*12288K key matrix 128*12288SoftMax 归一 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/19e3cf1ea28442eca60d5fc1303921f4.png)Value matrix 12288*12288 MLP Bas…...

前端的混合全栈之路Meteor篇(三):发布订阅示例代码及如何将Meteor的响应数据映射到vue3的reactive系统

Meteor 3.0 是一个功能强大的全栈 JavaScript 框架,特别适合实时应用程序的开发。它的核心机制之一就包括发布-订阅(Publish-Subscribe)模型,它允许服务器端发布数据,客户端订阅并实时更新。本文将介绍如何在 Meteor 3…...

自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

Webstorm 中对 Node.js 后端项目进行断点调试

首先,肯定需要有一个启动服务器的命令脚本。 然后,写一个 debug 的配置: 然后,debug 模式 启动项目和 启动调试服务: 最后,发送请求,即可调试: 这几个关键按钮含义: 重启…...

VUE前后端分离毕业设计题目项目有哪些,VUE程序开发常见毕业论文设计推荐

目录 0 为什么选择Vue.js 1 Vue.js 的主要特点 2 前后端分离毕业设计项目推荐 3 后端推荐 4 总结 0 为什么选择Vue.js 使用Vue.js开发计算机毕业设计是一个很好的选择,因为它不仅具有现代前端框架的所有优点,还能让你专注于构建高性能、高可用性的W…...

一、Spring Boot集成Spring Security之自动装配

Spring Boot集成Spring Security之自动装配介绍 一、实现功能及软件版本说明二、创建Spring Boot项目三、查看自动装配配置类四、自动装配配置类之SecurityAutoConfiguration1、SecurityAutoConfiguration部分源码2、主要作用3、SpringBootWebSecurityConfiguration3.1、Spring…...

计数相关的题 Python 力扣

2284. 最多单词数的发件人 给你一个聊天记录,共包含 n 条信息。给你两个字符串数组 messages 和 senders ,其中 messages[i] 是 senders[i] 发出的一条 信息 。 一条 信息 是若干用单个空格连接的 单词 ,信息开头和结尾不会有多余空格。发件…...

Express内置的中间件(express.json和express.urlencoded)格式的请求体数据

目录 Express内置的中间件 express.json 中间件的使用 express.urlencoded 中间件的使用 express.urlencoded([options]) 解析req.body的兼容写法 Express内置的中间件 自 Express 4.16.0 版本开始,Express 内置了 3 个常用的中间件,极大的提高了 …...

cmakelist加载Qt模块

Qt编程中,cmakelist会自动添加Core,Gui,Widgets模块,有时需要添加新的Qt的模块。在命令find_package中搜索要新增的模块,在命令target_link_libraries中添加要新增的模块。 比如要使用QUiLoader类,要增加对…...

8-2.Android 任务之 CountDownTimer 编码模板(开启计时器、取消计时器)

一、CountDownTimer 1、概述 CountDownTimer 是 Android 中一个用于执行定时操作的类 CountDownTimer 主要应用于在指定时间段内完成某项任务,或者每隔一段时间触发某项任务 2、使用步骤 创建 CountDownTimer:创建 CountDownTimer 就是创建它的匿名…...

Servlet的生命周期及用户提交表单页面的实现(实验报告)

一、实验目的、要求 1. 掌握Servlet的定义,即Servlet是运行在服务器端的Java程序,用于扩展服务器的功能。 2. 学习和掌握在开发环境中搭建Servlet应用所需的工具,如Tomcat服务器、IDEA等。 二、实验内容 根据本章所学知识,实验…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...