【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)
4. 微分
4.3 导数四则运算与反函数求导法则
双曲正弦函数 sh x = e x − e − x 2 \sh x=\frac{e^x-e^{-x}}{2} shx=2ex−e−x
双曲余弦函数 ch x = e x + e − x 2 \ch x=\frac{e^x+e^{-x}}{2} chx=2ex+e−x
ch 2 x − sh 2 x = 1 \ch^2 x-\sh^2 x=1 ch2x−sh2x=1
( e − x ) ′ = ( 1 e x ) ′ = − e x e 2 x = − e − x (e^{-x})'=(\frac{1}{e^x})'=-\frac{e^x}{e^{2x}}=-e^{-x} (e−x)′=(ex1)′=−e2xex=−e−x
( sh x ) ′ = 1 2 ( e x + e − x = ch x ) (\sh x)'=\frac{1}{2}(e^x+e^{-x}=\ch x) (shx)′=21(ex+e−x=chx)
同理 ( ch x ) ′ = sh x (\ch x)' = \sh x (chx)′=shx
双曲正切函数 th x = sh x ch x \th x=\frac{\sh x}{\ch x} thx=chxshx
双曲余切函数 cth x = ch x sh x \cth x=\frac{\ch x}{\sh x} cthx=shxchx
( th x ) ′ = ch 2 x − sh 2 x ch 2 x = 1 ch 2 x = sech 2 x (\th x)'=\frac{\ch^2 x-\sh^2 x}{\ch^2 x}=\frac{1}{\ch^2 x}=\text{sech}^2 x (thx)′=ch2xch2x−sh2x=ch2x1=sech2x
同理 ( cth x ) ′ = csch 2 x (\cth x)'=\text{csch}^2 x (cthx)′=csch2x
( sh − 1 x ) = 1 ( sh y ) ′ = 1 ch y = 1 1 + sh 2 y = 1 1 + x 2 (\sh^{-1} x)=\frac{1}{(\sh y)'}=\frac{1}{\ch y}=\frac{1}{\sqrt{1+\sh ^2 y}}=\frac{1}{\sqrt{1+x^2}} (sh−1x)=(shy)′1=chy1=1+sh2y1=1+x21
同理 ( ch − 1 x ) ′ = 1 x 2 − 1 (\ch^{-1} x)'=\frac{1}{\sqrt{x^2-1}} (ch−1x)′=x2−11
( th − 1 x ) ′ = ( cth − 1 x ) = 1 1 − x 2 (\th^{-1} x)'=(\cth^{-1} x)=\frac{1}{1-x^2} (th−1x)′=(cth−1x)=1−x21
4.3.3 基本初等函数的导数公式
( C ) ′ = 0 d ( C ) = 0 ⋅ d x = 0 ( x α ) ′ = α x α − 1 d ( x α ) = α x α − 1 d x ( sin x ) ′ = cos x d ( sin x ) = cos x d x ( cos x ) ′ = − sin x d ( cos x ) = − sin x d x ( tan x ) ′ = sec 2 x d ( tan x ) = sec 2 x d x ( cot x ) ′ = − csc 2 x d ( cot x ) = − csc 2 x d x ( sec x ) ′ = tan x sec x d ( sec x ) = tan x sec x d x ( csc x ) ′ = − cot x csc x d ( csc x ) = − cot x csc x d x ( arcsin x ) ′ = 1 1 − x 2 d ( arcsin x ) = d x 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 d ( arccos x ) = − d x 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 ( a x ) ′ = ln a ⋅ a x 特别地 ( e x ) ′ = e x ( log a x ) ′ = 1 ln a ⋅ 1 x 特别地 ( ln x ) ′ = 1 x ( sh x ) ′ = ch x ( ch x ) ′ = sh x ( th x ) ′ = sech 2 x ( cth x ) ′ = − csch 2 x ( sh − 1 x ) ′ = 1 1 + x 2 ( ch − 1 x ) ′ = 1 x 2 − 1 d ( arctan x ) = d x 1 + x 2 ( th − 1 x ) ′ = ( cth − 1 x ) ′ = 1 1 − x 2 d ( arccot x ) = − d x 1 + x 2 d ( a x ) = ln a ⋅ a x d x 特别地 d ( e x ) = e x d x d ( log a x ) = 1 ln a ⋅ d x x 特别地 d ( ln x ) = d x x d ( sh x ) = ch x d x d ( ch x ) = sh x d x d ( th x ) = sech 2 x d x d ( cth x ) = − csch 2 x d x d ( sh − 1 x ) = d x 1 + x 2 d ( ch − 1 x ) = d x x 2 − 1 d ( th − 1 x ) = d ( cth − 1 x ) = d x 1 − x 2 \begin{array}{l} (C)^{\prime}=0 \\ \mathrm{~d}(C)=0 \cdot \mathrm{~d} x=0 \\ \left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \\ \mathrm{~d}\left(x^{\alpha}\right)=\alpha x^{\alpha-1} \mathrm{~d} x \\ (\sin x)^{\prime}=\cos x \\ \mathrm{~d}(\sin x)=\cos x \mathrm{~d} x \\ (\cos x)^{\prime}=-\sin x \\ \mathrm{~d}(\cos x)=-\sin x \mathrm{~d} x \\ (\tan x)^{\prime}=\sec ^{2} x \\ \mathrm{~d}(\tan x)=\sec ^{2} x \mathrm{~d} x \\ (\cot x)^{\prime}=-\csc ^{2} x \\ \mathrm{~d}(\cot x)=-\csc ^{2} x \mathrm{~d} x \\ (\sec x)^{\prime}=\tan x \sec x \\ \mathrm{~d}(\sec x)=\tan x \sec x \mathrm{~d} x \\ (\csc x)^{\prime}=-\cot x \csc x \\ \mathrm{~d}(\csc x)=-\cot x \csc x \mathrm{~d} x \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\ \mathrm{~d}(\arcsin x)=\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad \mathrm{~d}(\arccos x)=-\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arctan x)^{\prime}=\frac{1}{1+x^{2}} \\ (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \\ \left(a^{x}\right)^{\prime}=\ln a \cdot a^{x} \\ \text { 特别地 }\left(e^{x}\right)^{\prime}=e^{x} \\ \left(\log _{a} x\right)^{\prime}=\frac{1}{\ln a} \cdot \frac{1}{x} \\ \text { 特别地 }(\ln x)^{\prime}=\frac{1}{x} \\ (\operatorname{sh} x)^{\prime}=\operatorname{ch} x \\ (\operatorname{ch} x)^{\prime}=\operatorname{sh} x \\ (\text { th } x)^{\prime}=\operatorname{sech}^{2} x \\ (\operatorname{cth} x)^{\prime}=-\operatorname{csch}^{2} x \\ \left(\operatorname{sh}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1+x^{2}}} \\ \left(\operatorname{ch}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{x^{2}-1}} \\ \mathrm{~d}(\arctan x)=\frac{\mathrm{d} x}{1+x^{2}} \\ \left(\operatorname{th}^{-1} x\right)^{\prime}=\left(\operatorname{cth}^{-1} x\right)^{\prime}=\frac{1}{1-x^{2}} \\ \mathrm{~d}(\operatorname{arccot} x)=-\frac{\mathrm{d} x}{1+x^{2}} \\ \mathrm{~d}\left(a^{x}\right)=\ln a \cdot a^{x} \mathrm{~d} x \\ \text { 特别地 } d\left(e^{x}\right)=e^{x} d x \\ \mathrm{~d}\left(\log _{a} x\right)=\frac{1}{\ln a} \cdot \frac{\mathrm{~d} x}{x} \\ \text { 特别地 } \mathrm{d}(\ln x)=\frac{\mathrm{d} x}{x} \\ \mathrm{~d}(\operatorname{sh} x)=\operatorname{ch} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{ch} x)=\operatorname{sh} x \mathrm{~d} x \\ \mathrm{~d}(\text { th } x)=\operatorname{sech}^{2} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{cth} x)=-\operatorname{csch}^{2} x \mathrm{~d} x \\ \mathrm{~d}\left(\operatorname{sh}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{1+x^{2}}} \\ \mathrm{~d}\left(\operatorname{ch}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{x^{2}-1}} \\ \mathrm{~d}\left(\operatorname{th}^{-1} x\right)=\mathrm{d}\left(\operatorname{cth}^{-1} x\right)=\frac{\mathrm{d} x}{1-x^{2}} \end{array} (C)′=0 d(C)=0⋅ dx=0(xα)′=αxα−1 d(xα)=αxα−1 dx(sinx)′=cosx d(sinx)=cosx dx(cosx)′=−sinx d(cosx)=−sinx dx(tanx)′=sec2x d(tanx)=sec2x dx(cotx)′=−csc2x d(cotx)=−csc2x dx(secx)′=tanxsecx d(secx)=tanxsecx dx(cscx)′=−cotxcscx d(cscx)=−cotxcscx dx(arcsinx)′=1−x21 d(arcsinx)=1−x2dx(arccosx)′=−1−x21 d(arccosx)=−1−x2dx(arctanx)′=1+x21(arccotx)′=−1+x21(ax)′=lna⋅ax 特别地 (ex)′=ex(logax)′=lna1⋅x1 特别地 (lnx)′=x1(shx)′=chx(chx)′=shx( th x)′=sech2x(cthx)′=−csch2x(sh−1x)′=1+x21(ch−1x)′=x2−11 d(arctanx)=1+x2dx(th−1x)′=(cth−1x)′=1−x21 d(arccotx)=−1+x2dx d(ax)=lna⋅ax dx 特别地 d(ex)=exdx d(logax)=lna1⋅x dx 特别地 d(lnx)=xdx d(shx)=chx dx d(chx)=shx dx d( th x)=sech2x dx d(cthx)=−csch2x dx d(sh−1x)=1+x2dx d(ch−1x)=x2−1dx d(th−1x)=d(cth−1x)=1−x2dx
【注】(1) [ ∑ i = 1 n c i f i ( x ) ] ′ = ∑ i = 1 n c i f ′ i ( x ) \left[\sum\limits_{i=1}^{n} c_{i} f_{i}(x)\right]^{\prime}=\sum\limits_{i=1}^{n} c_{i} f^{\prime}{ }_{i}(x) [i=1∑ncifi(x)]′=i=1∑ncif′i(x),其中 c i ( i = 1 , 2 , ⋯ , n ) c_{i}(i=1,2, \cdots, n) ci(i=1,2,⋯,n)为常数;
(2) [ ∏ i = 1 n f i ( x ) ] ′ = ∑ j = 1 n { f j ′ ( x ) ∏ i = 1 , i ≠ j n f i ( x ) } \left[\prod\limits_{i=1}^{n} f_{i}(x)\right]^{\prime}=\sum\limits_{j=1}^{n}\left\{f^{\prime}_{j}(x) \prod\limits_{i=1,i\ne j}^{n} f_{i}(x)\right\} [i=1∏nfi(x)]′=j=1∑n{fj′(x)i=1,i=j∏nfi(x)}(每一项是有一个因式的函数求导,其他不求导,然后相乘)
【例4.3.12】 y = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 y=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 y=anxn+an−1xn−1+...+a1x+a0,求 y ′ y' y′.
【解】 y ′ = n a n x n − 1 + ( n − 1 ) a n − 1 x n − 2 + . . . + a 1 y' = na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1 y′=nanxn−1+(n−1)an−1xn−2+...+a1
【例4.3.13】 y = e x ( x 2 + 3 x − 1 ) arcsin x y=e^x(x^2+3x-1)\arcsin x y=ex(x2+3x−1)arcsinx,求 y ′ y' y′.
【解】 y ′ = e x ( x 2 + 3 x − 1 ) arcsin x + e x ( 2 x + 3 ) arcsin x + e x ( x 2 + 3 x − 1 ) 1 1 − x 2 = e x ( ( x 2 + 5 x + 2 ) arcsin x + x 2 + 3 x − 1 1 − x 2 ) y'=e^x(x^2+3x-1)\arcsin x+ e^x(2x+3)\arcsin x + e^x(x^2+3x-1)\frac{1}{\sqrt{1-x^2}}=e^x((x^2+5x+2)\arcsin x+\frac{x^2+3x-1}{\sqrt{1-x^2}}) y′=ex(x2+3x−1)arcsinx+ex(2x+3)arcsinx+ex(x2+3x−1)1−x21=ex((x2+5x+2)arcsinx+1−x2x2+3x−1)
相关文章:
【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)
4. 微分 4.3 导数四则运算与反函数求导法则 双曲正弦函数 sh x e x − e − x 2 \sh x\frac{e^x-e^{-x}}{2} shx2ex−e−x 双曲余弦函数 ch x e x e − x 2 \ch x\frac{e^xe^{-x}}{2} chx2exe−x ch 2 x − sh 2 x 1 \ch^2 x-\sh^2 x1 ch2x−sh2x1 ( e…...
【2024】基于mysqldump的数据备份与恢复
基于mysqldump备份与恢复 mysqldump是一个用于备份 MySQL 数据库的实用工具。 它可以将数据库的结构(如数据库、表、视图、存储过程等的定义)和数据(表中的记录)导出为文本文件,这些文本文件可以包含 SQL 语句&#…...

家用无线路由器配置
一.首先进行线路连接。如下图:"光猫LAN口"—网线—"路由器WAN口"。 注意:家用光纤宽带一般选择使用200兆宽带到1000兆,如果网速不达标请查看路由器是否是千兆路由器。千兆路由器通常是双频的,支持两个信号一个…...

模拟算法(4)_外观数列
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 模拟算法(4)_外观数列 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 1. 题目链…...

vsomeip用到的socket
概述: vsomeip用到的socket的代码全部都在implementation\endpoints目录下面,主要分布在下面六个endpoint类中: local_client_endpoint_impl // 本地客户端socket(UDS Socket或者127.0.0.1的socket)local_server…...

MFC有三个选项:MFC ActiveX控件、MFC应用程序、MFC DLL,如何选择?
深耕AI:互联网行业 算法研发工程师 目录 MFC ActiveX 控件 控件的类型 标准控件 自定义控件 ActiveX控件 MFC ActiveX控件 标准/自定义控件 MFC ActiveX控件分类 3种MFC如何选择? MFC ActiveX控件 MFC 应用程序 MFC DLL 总结 举例说明…...

边缘概率 | 条件概率
关于什么是边缘概率分布和条件概率分布,在理论上,我自己也还没有理解,那么现在就根据我学习到的理解方式来记录一下,有错误指出,请大家指正!!! 例如,一个箱子里有十个乒乓…...
深入浅出:现代JavaScript开发者必知必会的Web性能优化技巧
亲爱的读者们,欢迎来到本期博客。今天,我们将深入探讨JavaScript开发者在日常工作中如何提升Web性能。在快节奏的Web开发世界中,性能优化至关重要。本文将分享一些实用技巧,帮助你构建快速、高效的Web应用。 1. 使用CDN加速资源加…...

【S32K3 RTD LLD篇5】K344 ADC SW+HW trigger
【S32K3 RTD LLD篇5】K344 ADC SWHW trigger 一,文档简介二,ADC SW HW 触发2.1 软硬件平台2.2 SWADC 软件触发2.3 SWBCTUADC 软件BCTU触发2.4 PITTRIGMUXADC 硬件PIT TRIGUMX触发2.5 EMIOSBCTUHWADC硬件EMIOS BCTU触发2.6 EMIOSBCTUHW LISTADC硬件EMIOS …...

TransFormer 视频笔记
TransFormer BasicsAttention单头注意力 single head attentionQ: query 查寻矩阵 128*12288K key matrix 128*12288SoftMax 归一 Value matrix 12288*12288 MLP Bas…...
前端的混合全栈之路Meteor篇(三):发布订阅示例代码及如何将Meteor的响应数据映射到vue3的reactive系统
Meteor 3.0 是一个功能强大的全栈 JavaScript 框架,特别适合实时应用程序的开发。它的核心机制之一就包括发布-订阅(Publish-Subscribe)模型,它允许服务器端发布数据,客户端订阅并实时更新。本文将介绍如何在 Meteor 3…...

自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

Webstorm 中对 Node.js 后端项目进行断点调试
首先,肯定需要有一个启动服务器的命令脚本。 然后,写一个 debug 的配置: 然后,debug 模式 启动项目和 启动调试服务: 最后,发送请求,即可调试: 这几个关键按钮含义: 重启…...

VUE前后端分离毕业设计题目项目有哪些,VUE程序开发常见毕业论文设计推荐
目录 0 为什么选择Vue.js 1 Vue.js 的主要特点 2 前后端分离毕业设计项目推荐 3 后端推荐 4 总结 0 为什么选择Vue.js 使用Vue.js开发计算机毕业设计是一个很好的选择,因为它不仅具有现代前端框架的所有优点,还能让你专注于构建高性能、高可用性的W…...

一、Spring Boot集成Spring Security之自动装配
Spring Boot集成Spring Security之自动装配介绍 一、实现功能及软件版本说明二、创建Spring Boot项目三、查看自动装配配置类四、自动装配配置类之SecurityAutoConfiguration1、SecurityAutoConfiguration部分源码2、主要作用3、SpringBootWebSecurityConfiguration3.1、Spring…...
计数相关的题 Python 力扣
2284. 最多单词数的发件人 给你一个聊天记录,共包含 n 条信息。给你两个字符串数组 messages 和 senders ,其中 messages[i] 是 senders[i] 发出的一条 信息 。 一条 信息 是若干用单个空格连接的 单词 ,信息开头和结尾不会有多余空格。发件…...
Express内置的中间件(express.json和express.urlencoded)格式的请求体数据
目录 Express内置的中间件 express.json 中间件的使用 express.urlencoded 中间件的使用 express.urlencoded([options]) 解析req.body的兼容写法 Express内置的中间件 自 Express 4.16.0 版本开始,Express 内置了 3 个常用的中间件,极大的提高了 …...
cmakelist加载Qt模块
Qt编程中,cmakelist会自动添加Core,Gui,Widgets模块,有时需要添加新的Qt的模块。在命令find_package中搜索要新增的模块,在命令target_link_libraries中添加要新增的模块。 比如要使用QUiLoader类,要增加对…...
8-2.Android 任务之 CountDownTimer 编码模板(开启计时器、取消计时器)
一、CountDownTimer 1、概述 CountDownTimer 是 Android 中一个用于执行定时操作的类 CountDownTimer 主要应用于在指定时间段内完成某项任务,或者每隔一段时间触发某项任务 2、使用步骤 创建 CountDownTimer:创建 CountDownTimer 就是创建它的匿名…...

Servlet的生命周期及用户提交表单页面的实现(实验报告)
一、实验目的、要求 1. 掌握Servlet的定义,即Servlet是运行在服务器端的Java程序,用于扩展服务器的功能。 2. 学习和掌握在开发环境中搭建Servlet应用所需的工具,如Tomcat服务器、IDEA等。 二、实验内容 根据本章所学知识,实验…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...