当前位置: 首页 > news >正文

机器学习框架总结

机器学习框架是用于构建、训练、评估和部署机器学习模型的工具和库的集合。它们简化了模型开发过程,并提供了预构建的功能、优化的计算性能和对深度学习、监督学习、无监督学习等技术的支持。下面是一些主要的机器学习框架的详细介绍:

1. TensorFlow

1、简介:

TensorFlow是由Google开发的开源框架,广泛用于深度学习和机器学习任务。它提供了灵活的计算图和自动微分功能,适用于大规模的分布式计算。

2、特点:

  • 计算图:可以使用静态或动态图(使用TensorFlow 2.0的Eager Execution模式)。
  • 跨平台:支持从桌面到移动设备(如Android和iOS)到云端部署。
  • Keras集成:Keras作为TensorFlow 2.0中的高级API,简化了构建和训练神经网络的过程。
  • TF Serving:用于模型部署的组件。
  • 支持硬件加速:包括GPU和TPU加速。

3、应用:

  • 用于图像识别、语音识别、自然语言处理等任务。

2. PyTorch

1、简介:

PyTorch是Facebook开发的开源深度学习框架,因其动态计算图和灵活的设计,广受研究人员和开发人员的青睐。

2、特点:

  • 动态图(Dynamic Computational Graph):能够即时改变图结构,适用于需要灵活性的研究任务。
  • Pythonic设计:与Python深度集成,代码易读,调试方便。
  • 支持自动微分:使用autograd模块来自动计算梯度。
  • TorchServe:为PyTorch模型的部署提供了工具。
  • GPU加速:支持CUDA等硬件加速,适合深度学习任务。

3、应用:

  • 自然语言处理、计算机视觉、强化学习等。

3. Scikit-learn

1、简介:

Scikit-learn是基于Python的开源库,专注于传统的机器学习算法,广泛用于数据挖掘和数据分析任务。

2、特点:

  • 简单易用:适合初学者,拥有一致的API设计。
  • 算法库丰富:支持分类、回归、聚类、降维、模型选择和预处理等功能。
  • 集成Pandas和NumPy:与其他Python数据处理库无缝集成。
  • 支持监督学习和无监督学习。
  • 不支持深度学习:Scikit-learn更适合传统的机器学习方法,如决策树、随机森林、支持向量机等。

3、应用:

数据预处理、特征工程、监督学习与无监督学习。

4. XGBoost

1、简介:

XGBoost是优化的梯度提升决策树(GBDT)算法的开源实现,广泛用于结构化数据的分类和回归任务。

2、特点:

  • 高效性:优化了计算速度和内存占用,适合大规模数据集。
  • 支持并行和分布式计算:可以利用多个核心和分布式环境进行计算。
  • 特征重要性:可以输出特征的相对重要性,方便模型解释。
  • 集成多种语言:支持Python、R、Java、C++等多种编程语言。

3、应用:

  • Kaggle比赛、金融预测、医疗数据分析等。

5. Keras

1、简介:

Keras是一个用于构建深度学习模型的高级API,最初独立开发,后被集成到TensorFlow中。它以其简洁易用的特性而著名。

2、特点:

  • 用户友好:易于上手,适合初学者。
  • 模块化设计:通过堆叠层(Layer)来构建模型,灵活且易于扩展。
  • 支持多种后端:早期支持TensorFlow、Theano、CNTK等后端,现在专注于TensorFlow。
  • 快速原型设计:适合快速构建和验证模型。

3、应用:

快速原型设计、计算机视觉、自然语言处理等。

6. LightGBM

1、简介:

LightGBM是Microsoft开发的梯度提升框架,优化了速度和性能,特别适合处理大规模数据集。

2、特点:

  • 高效率:在内存使用和训练时间上比XGBoost更优。
  • 叶子增长策略:使用基于叶子的增长策略,相比于基于深度的增长策略,能够减少计算开销。
  • 支持类别特征:能够原生处理类别特征,无需手动进行编码。
  • 并行学习:支持并行和分布式学习。

3、应用:

结构化数据的分类和回归任务。

7. Apache MXNet

1、简介:

MXNet是一个高效、灵活且可扩展的深度学习框架,支持多种编程语言,广泛应用于大规模的分布式训练。

2、特点:

  • 动态图和静态图:同时支持动态图和静态图模式。
  • 多语言支持:支持Python、Scala、C++、R等多种编程语言。
  • 性能优越:为大规模分布式训练进行了优化,支持GPU和多机环境。
  • 轻量级:适合部署到移动设备和嵌入式系统。

3、应用:

图像分类、对象检测、语音识别等任务。

8. CatBoost

1、简介:

CatBoost是Yandex开发的一种基于梯度提升的决策树框架,专门针对类别型特征进行了优化。

2、特点:

  • 类别特征处理:无需手动处理类别特征,框架会自动优化处理。
  • 鲁棒性:对缺失值、类别特征以及各种输入数据的分布具有良好的鲁棒性。
  • 高效性:与XGBoost和LightGBM相似,在大规模数据集上有出色的表现。
  • 支持GPU加速:可以利用GPU来加速训练过程。

3、应用:

Kaggle比赛、结构化数据分类任务。

9. JAX

1、简介:

JAX是Google开发的用于数值计算和机器学习研究的框架,结合了NumPy和自动微分功能,适用于机器学习和科学计算。

2、特点:

  • 自动微分:支持正向和反向自动微分,适用于梯度计算。
  • 与NumPy兼容:代码风格与NumPy类似,适合进行数学计算。
  • GPU/TPU支持:能够自动将计算分派到GPU或TPU。
  • JIT编译:通过Just-In-Time(JIT)编译加速代码执行。

3、应用:

研究和开发新型机器学习模型。

10、总结

不同的框架适用于不同的机器学习任务和开发阶段。对于深度学习,TensorFlow和PyTorch是主要选择,而对于传统的机器学习任务,Scikit-learn、XGBoost、LightGBM等框架更为适用。选择合适的框架可以根据项目需求、团队技术栈以及目标硬件平台进行。

相关文章:

机器学习框架总结

机器学习框架是用于构建、训练、评估和部署机器学习模型的工具和库的集合。它们简化了模型开发过程,并提供了预构建的功能、优化的计算性能和对深度学习、监督学习、无监督学习等技术的支持。下面是一些主要的机器学习框架的详细介绍: 1. TensorFlow 1…...

docker pull 超时的问题如何解决

docker不能使用&#xff0c;使用之前的阿里云镜像失败。。。 搜了各种解决方法&#xff0c;感谢B站UP主 <iframe src"//player.bilibili.com/player.html?isOutsidetrue&aid113173361331402&bvidBV1KstBeEEQR&cid25942297878&p1" scrolling"…...

【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)

4. 微分 4.3 导数四则运算与反函数求导法则 双曲正弦函数 sh ⁡ x e x − e − x 2 \sh x\frac{e^x-e^{-x}}{2} shx2ex−e−x​ 双曲余弦函数 ch ⁡ x e x e − x 2 \ch x\frac{e^xe^{-x}}{2} chx2exe−x​ ch ⁡ 2 x − sh ⁡ 2 x 1 \ch^2 x-\sh^2 x1 ch2x−sh2x1 ( e…...

【2024】基于mysqldump的数据备份与恢复

基于mysqldump备份与恢复 mysqldump是一个用于备份 MySQL 数据库的实用工具。 它可以将数据库的结构&#xff08;如数据库、表、视图、存储过程等的定义&#xff09;和数据&#xff08;表中的记录&#xff09;导出为文本文件&#xff0c;这些文本文件可以包含 SQL 语句&#…...

家用无线路由器配置

一.首先进行线路连接。如下图&#xff1a;"光猫LAN口"—网线—"路由器WAN口"。 注意&#xff1a;家用光纤宽带一般选择使用200兆宽带到1000兆&#xff0c;如果网速不达标请查看路由器是否是千兆路由器。千兆路由器通常是双频的&#xff0c;支持两个信号一个…...

模拟算法(4)_外观数列

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 模拟算法(4)_外观数列 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 1. 题目链…...

vsomeip用到的socket

概述&#xff1a; ​ vsomeip用到的socket的代码全部都在implementation\endpoints目录下面&#xff0c;主要分布在下面六个endpoint类中&#xff1a; local_client_endpoint_impl // 本地客户端socket&#xff08;UDS Socket或者127.0.0.1的socket&#xff09;local_server…...

MFC有三个选项:MFC ActiveX控件、MFC应用程序、MFC DLL,如何选择?

深耕AI&#xff1a;互联网行业 算法研发工程师 ​ 目录 MFC ActiveX 控件 控件的类型 标准控件 自定义控件 ActiveX控件 MFC ActiveX控件 标准/自定义控件 MFC ActiveX控件分类 3种MFC如何选择&#xff1f; MFC ActiveX控件 MFC 应用程序 MFC DLL 总结 举例说明…...

边缘概率 | 条件概率

关于什么是边缘概率分布和条件概率分布&#xff0c;在理论上&#xff0c;我自己也还没有理解&#xff0c;那么现在就根据我学习到的理解方式来记录一下&#xff0c;有错误指出&#xff0c;请大家指正&#xff01;&#xff01;&#xff01; 例如&#xff0c;一个箱子里有十个乒乓…...

深入浅出:现代JavaScript开发者必知必会的Web性能优化技巧

亲爱的读者们&#xff0c;欢迎来到本期博客。今天&#xff0c;我们将深入探讨JavaScript开发者在日常工作中如何提升Web性能。在快节奏的Web开发世界中&#xff0c;性能优化至关重要。本文将分享一些实用技巧&#xff0c;帮助你构建快速、高效的Web应用。 1. 使用CDN加速资源加…...

【S32K3 RTD LLD篇5】K344 ADC SW+HW trigger

【S32K3 RTD LLD篇5】K344 ADC SWHW trigger 一&#xff0c;文档简介二&#xff0c;ADC SW HW 触发2.1 软硬件平台2.2 SWADC 软件触发2.3 SWBCTUADC 软件BCTU触发2.4 PITTRIGMUXADC 硬件PIT TRIGUMX触发2.5 EMIOSBCTUHWADC硬件EMIOS BCTU触发2.6 EMIOSBCTUHW LISTADC硬件EMIOS …...

TransFormer 视频笔记

TransFormer BasicsAttention单头注意力 single head attentionQ&#xff1a; query 查寻矩阵 128*12288K key matrix 128*12288SoftMax 归一 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/19e3cf1ea28442eca60d5fc1303921f4.png)Value matrix 12288*12288 MLP Bas…...

前端的混合全栈之路Meteor篇(三):发布订阅示例代码及如何将Meteor的响应数据映射到vue3的reactive系统

Meteor 3.0 是一个功能强大的全栈 JavaScript 框架&#xff0c;特别适合实时应用程序的开发。它的核心机制之一就包括发布-订阅&#xff08;Publish-Subscribe&#xff09;模型&#xff0c;它允许服务器端发布数据&#xff0c;客户端订阅并实时更新。本文将介绍如何在 Meteor 3…...

自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…...

Webstorm 中对 Node.js 后端项目进行断点调试

首先&#xff0c;肯定需要有一个启动服务器的命令脚本。 然后&#xff0c;写一个 debug 的配置&#xff1a; 然后&#xff0c;debug 模式 启动项目和 启动调试服务&#xff1a; 最后&#xff0c;发送请求&#xff0c;即可调试&#xff1a; 这几个关键按钮含义&#xff1a; 重启…...

VUE前后端分离毕业设计题目项目有哪些,VUE程序开发常见毕业论文设计推荐

目录 0 为什么选择Vue.js 1 Vue.js 的主要特点 2 前后端分离毕业设计项目推荐 3 后端推荐 4 总结 0 为什么选择Vue.js 使用Vue.js开发计算机毕业设计是一个很好的选择&#xff0c;因为它不仅具有现代前端框架的所有优点&#xff0c;还能让你专注于构建高性能、高可用性的W…...

一、Spring Boot集成Spring Security之自动装配

Spring Boot集成Spring Security之自动装配介绍 一、实现功能及软件版本说明二、创建Spring Boot项目三、查看自动装配配置类四、自动装配配置类之SecurityAutoConfiguration1、SecurityAutoConfiguration部分源码2、主要作用3、SpringBootWebSecurityConfiguration3.1、Spring…...

计数相关的题 Python 力扣

2284. 最多单词数的发件人 给你一个聊天记录&#xff0c;共包含 n 条信息。给你两个字符串数组 messages 和 senders &#xff0c;其中 messages[i] 是 senders[i] 发出的一条 信息 。 一条 信息 是若干用单个空格连接的 单词 &#xff0c;信息开头和结尾不会有多余空格。发件…...

Express内置的中间件(express.json和express.urlencoded)格式的请求体数据

目录 Express内置的中间件 express.json 中间件的使用 express.urlencoded 中间件的使用 express.urlencoded([options]) 解析req.body的兼容写法 Express内置的中间件 自 Express 4.16.0 版本开始&#xff0c;Express 内置了 3 个常用的中间件&#xff0c;极大的提高了 …...

cmakelist加载Qt模块

Qt编程中&#xff0c;cmakelist会自动添加Core&#xff0c;Gui&#xff0c;Widgets模块&#xff0c;有时需要添加新的Qt的模块。在命令find_package中搜索要新增的模块&#xff0c;在命令target_link_libraries中添加要新增的模块。 比如要使用QUiLoader类&#xff0c;要增加对…...

8-2.Android 任务之 CountDownTimer 编码模板(开启计时器、取消计时器)

一、CountDownTimer 1、概述 CountDownTimer 是 Android 中一个用于执行定时操作的类 CountDownTimer 主要应用于在指定时间段内完成某项任务&#xff0c;或者每隔一段时间触发某项任务 2、使用步骤 创建 CountDownTimer&#xff1a;创建 CountDownTimer 就是创建它的匿名…...

Servlet的生命周期及用户提交表单页面的实现(实验报告)

一、实验目的、要求 1. 掌握Servlet的定义&#xff0c;即Servlet是运行在服务器端的Java程序&#xff0c;用于扩展服务器的功能。 2. 学习和掌握在开发环境中搭建Servlet应用所需的工具&#xff0c;如Tomcat服务器、IDEA等。 二、实验内容 根据本章所学知识&#xff0c;实验…...

【Router】路由功能之IP过滤(IP Filter)功能(基于端口)介绍及实现

IP过滤(IP Filter) IP Filter是一种通过对网络数据包中的 IP 地址进行分析和筛选,以实现对网络流量的控制和管理的技术。 IP过滤(IP Filter)作用 安全防护 可以阻止来自特定 IP 地址或 IP 地址范围的恶意攻击、非法访问等,增强网络的安全性。 流量管理 根据不同的 IP …...

数据结构_2.2、顺序表插入删除查找

1、线性表的顺序存储表示定义&#xff1a; 线性表&#xff1a;是具有相同数据类型的n &#xff08;n≥0&#xff09;个数据元素的有限序列 顺序表&#xff1a;用顺序存储的方式实现线性表 顺序存储&#xff1a;把逻辑上相邻的元素存储在物理 位置上也相邻的存储单元中&#…...

嵌入式C语言自我修养:编译链接

源文件生成可执行文件的过程&#xff1f; 源文件经过预处理、编译、汇编、链接生成一个可执行的目标文件。 编译器驱动程序&#xff0c;包括预处理器、编译器、汇编器和链接器。Linux用户可以调用GCC驱动程序来完成整个编译流程。 使用GCC驱动程序将示例程序从ASCII码源文件转换…...

Mac制作Linux操作系统启动盘

前期准备 一个 Mac 电脑 一个 U 盘&#xff08;8GB 以上&#xff09; 下载好 Linux 系统镜像&#xff08;iso 文件&#xff09; 具体步骤 挂载 U 盘 解挂 U 盘 写系统镜像到 U 盘 完成 一、挂载 U 盘 首先插入 U 盘&#xff0c;打开终端输入下面的命令查看 U 盘是否已经 m…...

PHP语言发展历程

PHP是一种开源的服务器端脚本语言&#xff0c;主要用于Web开发&#xff0c;最初由Rasmus Lerdorf在1994年创建。PHP的发展历程如下&#xff1a; PHP的起源&#xff1a;1994年&#xff0c;Rasmus Lerdorf创建了PHP的第一个版本&#xff0c;最初是一套用于跟踪他个人简历访问的C…...

Notepad++ 之 AndroidLogger插件

背景 最近一段时间在分析Android log 定位问题&#xff0c;Notepad 之前用的比较少&#xff0c;现在看log觉得确实好用&#xff0c;美中不足的是 看Android log的时候不像 logcat -v color 可以区分不同等级的颜色&#xff0c;于是调研了一下&#xff0c;发现大部分都是使用An…...

开源2+1链动模式AI智能名片O2O商城小程序源码:线下店立体连接的超强助力器

摘要&#xff1a;本文将为您揭示线下店立体连接的重大意义&#xff0c;您知道吗&#xff1f;线上越火&#xff0c;线下就得越深入经营。现代门店可不再只是卖东西的地儿&#xff0c;还得连接KOC呢&#xff01;咱们来看看门店要做的那些超重要的事儿&#xff0c;还有开源21链动模…...

我为什么决定关闭ChatGPT的记忆功能?

你好&#xff0c;我是三桥君 几个月前&#xff0c;ChatGPT宣布即将推出一项名为“记忆功能”的新特性&#xff0c;英文名叫memory。 这个功能听起来相当吸引人&#xff0c;宣传口号是让GPT更加了解用户&#xff0c;仿佛是要为我们每个人量身打造一个专属的AI助手。 在记忆功…...