机器学习框架总结
机器学习框架是用于构建、训练、评估和部署机器学习模型的工具和库的集合。它们简化了模型开发过程,并提供了预构建的功能、优化的计算性能和对深度学习、监督学习、无监督学习等技术的支持。下面是一些主要的机器学习框架的详细介绍:
1. TensorFlow
1、简介:
TensorFlow是由Google开发的开源框架,广泛用于深度学习和机器学习任务。它提供了灵活的计算图和自动微分功能,适用于大规模的分布式计算。
2、特点:
- 计算图:可以使用静态或动态图(使用TensorFlow 2.0的Eager Execution模式)。
- 跨平台:支持从桌面到移动设备(如Android和iOS)到云端部署。
- Keras集成:Keras作为TensorFlow 2.0中的高级API,简化了构建和训练神经网络的过程。
- TF Serving:用于模型部署的组件。
- 支持硬件加速:包括GPU和TPU加速。
3、应用:
- 用于图像识别、语音识别、自然语言处理等任务。
2. PyTorch
1、简介:
PyTorch是Facebook开发的开源深度学习框架,因其动态计算图和灵活的设计,广受研究人员和开发人员的青睐。
2、特点:
- 动态图(Dynamic Computational Graph):能够即时改变图结构,适用于需要灵活性的研究任务。
- Pythonic设计:与Python深度集成,代码易读,调试方便。
- 支持自动微分:使用autograd模块来自动计算梯度。
- TorchServe:为PyTorch模型的部署提供了工具。
- GPU加速:支持CUDA等硬件加速,适合深度学习任务。
3、应用:
- 自然语言处理、计算机视觉、强化学习等。
3. Scikit-learn
1、简介:
Scikit-learn是基于Python的开源库,专注于传统的机器学习算法,广泛用于数据挖掘和数据分析任务。
2、特点:
- 简单易用:适合初学者,拥有一致的API设计。
- 算法库丰富:支持分类、回归、聚类、降维、模型选择和预处理等功能。
- 集成Pandas和NumPy:与其他Python数据处理库无缝集成。
- 支持监督学习和无监督学习。
- 不支持深度学习:Scikit-learn更适合传统的机器学习方法,如决策树、随机森林、支持向量机等。
3、应用:
数据预处理、特征工程、监督学习与无监督学习。
4. XGBoost
1、简介:
XGBoost是优化的梯度提升决策树(GBDT)算法的开源实现,广泛用于结构化数据的分类和回归任务。
2、特点:
- 高效性:优化了计算速度和内存占用,适合大规模数据集。
- 支持并行和分布式计算:可以利用多个核心和分布式环境进行计算。
- 特征重要性:可以输出特征的相对重要性,方便模型解释。
- 集成多种语言:支持Python、R、Java、C++等多种编程语言。
3、应用:
- Kaggle比赛、金融预测、医疗数据分析等。
5. Keras
1、简介:
Keras是一个用于构建深度学习模型的高级API,最初独立开发,后被集成到TensorFlow中。它以其简洁易用的特性而著名。
2、特点:
- 用户友好:易于上手,适合初学者。
- 模块化设计:通过堆叠层(Layer)来构建模型,灵活且易于扩展。
- 支持多种后端:早期支持TensorFlow、Theano、CNTK等后端,现在专注于TensorFlow。
- 快速原型设计:适合快速构建和验证模型。
3、应用:
快速原型设计、计算机视觉、自然语言处理等。
6. LightGBM
1、简介:
LightGBM是Microsoft开发的梯度提升框架,优化了速度和性能,特别适合处理大规模数据集。
2、特点:
- 高效率:在内存使用和训练时间上比XGBoost更优。
- 叶子增长策略:使用基于叶子的增长策略,相比于基于深度的增长策略,能够减少计算开销。
- 支持类别特征:能够原生处理类别特征,无需手动进行编码。
- 并行学习:支持并行和分布式学习。
3、应用:
结构化数据的分类和回归任务。
7. Apache MXNet
1、简介:
MXNet是一个高效、灵活且可扩展的深度学习框架,支持多种编程语言,广泛应用于大规模的分布式训练。
2、特点:
- 动态图和静态图:同时支持动态图和静态图模式。
- 多语言支持:支持Python、Scala、C++、R等多种编程语言。
- 性能优越:为大规模分布式训练进行了优化,支持GPU和多机环境。
- 轻量级:适合部署到移动设备和嵌入式系统。
3、应用:
图像分类、对象检测、语音识别等任务。
8. CatBoost
1、简介:
CatBoost是Yandex开发的一种基于梯度提升的决策树框架,专门针对类别型特征进行了优化。
2、特点:
- 类别特征处理:无需手动处理类别特征,框架会自动优化处理。
- 鲁棒性:对缺失值、类别特征以及各种输入数据的分布具有良好的鲁棒性。
- 高效性:与XGBoost和LightGBM相似,在大规模数据集上有出色的表现。
- 支持GPU加速:可以利用GPU来加速训练过程。
3、应用:
Kaggle比赛、结构化数据分类任务。
9. JAX
1、简介:
JAX是Google开发的用于数值计算和机器学习研究的框架,结合了NumPy和自动微分功能,适用于机器学习和科学计算。
2、特点:
- 自动微分:支持正向和反向自动微分,适用于梯度计算。
- 与NumPy兼容:代码风格与NumPy类似,适合进行数学计算。
- GPU/TPU支持:能够自动将计算分派到GPU或TPU。
- JIT编译:通过Just-In-Time(JIT)编译加速代码执行。
3、应用:
研究和开发新型机器学习模型。
10、总结
不同的框架适用于不同的机器学习任务和开发阶段。对于深度学习,TensorFlow和PyTorch是主要选择,而对于传统的机器学习任务,Scikit-learn、XGBoost、LightGBM等框架更为适用。选择合适的框架可以根据项目需求、团队技术栈以及目标硬件平台进行。
相关文章:
机器学习框架总结
机器学习框架是用于构建、训练、评估和部署机器学习模型的工具和库的集合。它们简化了模型开发过程,并提供了预构建的功能、优化的计算性能和对深度学习、监督学习、无监督学习等技术的支持。下面是一些主要的机器学习框架的详细介绍: 1. TensorFlow 1…...

docker pull 超时的问题如何解决
docker不能使用,使用之前的阿里云镜像失败。。。 搜了各种解决方法,感谢B站UP主 <iframe src"//player.bilibili.com/player.html?isOutsidetrue&aid113173361331402&bvidBV1KstBeEEQR&cid25942297878&p1" scrolling"…...
【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)
4. 微分 4.3 导数四则运算与反函数求导法则 双曲正弦函数 sh x e x − e − x 2 \sh x\frac{e^x-e^{-x}}{2} shx2ex−e−x 双曲余弦函数 ch x e x e − x 2 \ch x\frac{e^xe^{-x}}{2} chx2exe−x ch 2 x − sh 2 x 1 \ch^2 x-\sh^2 x1 ch2x−sh2x1 ( e…...
【2024】基于mysqldump的数据备份与恢复
基于mysqldump备份与恢复 mysqldump是一个用于备份 MySQL 数据库的实用工具。 它可以将数据库的结构(如数据库、表、视图、存储过程等的定义)和数据(表中的记录)导出为文本文件,这些文本文件可以包含 SQL 语句&#…...

家用无线路由器配置
一.首先进行线路连接。如下图:"光猫LAN口"—网线—"路由器WAN口"。 注意:家用光纤宽带一般选择使用200兆宽带到1000兆,如果网速不达标请查看路由器是否是千兆路由器。千兆路由器通常是双频的,支持两个信号一个…...

模拟算法(4)_外观数列
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 模拟算法(4)_外观数列 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 1. 题目链…...

vsomeip用到的socket
概述: vsomeip用到的socket的代码全部都在implementation\endpoints目录下面,主要分布在下面六个endpoint类中: local_client_endpoint_impl // 本地客户端socket(UDS Socket或者127.0.0.1的socket)local_server…...

MFC有三个选项:MFC ActiveX控件、MFC应用程序、MFC DLL,如何选择?
深耕AI:互联网行业 算法研发工程师 目录 MFC ActiveX 控件 控件的类型 标准控件 自定义控件 ActiveX控件 MFC ActiveX控件 标准/自定义控件 MFC ActiveX控件分类 3种MFC如何选择? MFC ActiveX控件 MFC 应用程序 MFC DLL 总结 举例说明…...

边缘概率 | 条件概率
关于什么是边缘概率分布和条件概率分布,在理论上,我自己也还没有理解,那么现在就根据我学习到的理解方式来记录一下,有错误指出,请大家指正!!! 例如,一个箱子里有十个乒乓…...
深入浅出:现代JavaScript开发者必知必会的Web性能优化技巧
亲爱的读者们,欢迎来到本期博客。今天,我们将深入探讨JavaScript开发者在日常工作中如何提升Web性能。在快节奏的Web开发世界中,性能优化至关重要。本文将分享一些实用技巧,帮助你构建快速、高效的Web应用。 1. 使用CDN加速资源加…...

【S32K3 RTD LLD篇5】K344 ADC SW+HW trigger
【S32K3 RTD LLD篇5】K344 ADC SWHW trigger 一,文档简介二,ADC SW HW 触发2.1 软硬件平台2.2 SWADC 软件触发2.3 SWBCTUADC 软件BCTU触发2.4 PITTRIGMUXADC 硬件PIT TRIGUMX触发2.5 EMIOSBCTUHWADC硬件EMIOS BCTU触发2.6 EMIOSBCTUHW LISTADC硬件EMIOS …...

TransFormer 视频笔记
TransFormer BasicsAttention单头注意力 single head attentionQ: query 查寻矩阵 128*12288K key matrix 128*12288SoftMax 归一 Value matrix 12288*12288 MLP Bas…...
前端的混合全栈之路Meteor篇(三):发布订阅示例代码及如何将Meteor的响应数据映射到vue3的reactive系统
Meteor 3.0 是一个功能强大的全栈 JavaScript 框架,特别适合实时应用程序的开发。它的核心机制之一就包括发布-订阅(Publish-Subscribe)模型,它允许服务器端发布数据,客户端订阅并实时更新。本文将介绍如何在 Meteor 3…...

自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

Webstorm 中对 Node.js 后端项目进行断点调试
首先,肯定需要有一个启动服务器的命令脚本。 然后,写一个 debug 的配置: 然后,debug 模式 启动项目和 启动调试服务: 最后,发送请求,即可调试: 这几个关键按钮含义: 重启…...

VUE前后端分离毕业设计题目项目有哪些,VUE程序开发常见毕业论文设计推荐
目录 0 为什么选择Vue.js 1 Vue.js 的主要特点 2 前后端分离毕业设计项目推荐 3 后端推荐 4 总结 0 为什么选择Vue.js 使用Vue.js开发计算机毕业设计是一个很好的选择,因为它不仅具有现代前端框架的所有优点,还能让你专注于构建高性能、高可用性的W…...

一、Spring Boot集成Spring Security之自动装配
Spring Boot集成Spring Security之自动装配介绍 一、实现功能及软件版本说明二、创建Spring Boot项目三、查看自动装配配置类四、自动装配配置类之SecurityAutoConfiguration1、SecurityAutoConfiguration部分源码2、主要作用3、SpringBootWebSecurityConfiguration3.1、Spring…...
计数相关的题 Python 力扣
2284. 最多单词数的发件人 给你一个聊天记录,共包含 n 条信息。给你两个字符串数组 messages 和 senders ,其中 messages[i] 是 senders[i] 发出的一条 信息 。 一条 信息 是若干用单个空格连接的 单词 ,信息开头和结尾不会有多余空格。发件…...
Express内置的中间件(express.json和express.urlencoded)格式的请求体数据
目录 Express内置的中间件 express.json 中间件的使用 express.urlencoded 中间件的使用 express.urlencoded([options]) 解析req.body的兼容写法 Express内置的中间件 自 Express 4.16.0 版本开始,Express 内置了 3 个常用的中间件,极大的提高了 …...
cmakelist加载Qt模块
Qt编程中,cmakelist会自动添加Core,Gui,Widgets模块,有时需要添加新的Qt的模块。在命令find_package中搜索要新增的模块,在命令target_link_libraries中添加要新增的模块。 比如要使用QUiLoader类,要增加对…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...