集中式架构和分布式架构
数据是企业的核心资产和战略资源。面对爆炸性的数据增长,如何有效地组织、管理和利用数据成为企业的重大挑战。数据架构作为企业数据管理的蓝图和框架,发挥重要作用。本文就来详细说下当下主流的两种数据架构的类型。
首先明确数据架构定义:
数据架构:数据架构是一种对企业数据资产进行组织、管理和利用的蓝图和框架。它涵盖了数据的整个生命周期,从数据的产生、存储、处理、分析到最终的使用和归档。
数据架构最主流的两种类型,集中式数据架构,分布式数据架构,接下来我们来分别看看这两种结构。
一·集中式数据架构
定义:所有数据集中存储在一个单一的数据库系统中,通常是一个大型的关系型数据库。数据的管理和维护由一个中央团队负责,数据的一致性和完整性容易得到保证。应用程序直接访问中央数据库,数据的访问路径简单,查询效率相对较高。
优点:
数据一致性高:所有数据集中存储在一个中心位置,由一个或少数几个数据库管理员进行管理,能够更好地保证数据的一致性,避免数据冲突或者重复。这对于需要高度一致性的业务,如金融交易、财务报表等来说非常重要。
维护管理简单:数据集中在一处,只需关注一个系统,就可以完成所有的维护工作,包括数据备份、恢复、优化等,降低了维护的复杂性和工作量。
数据安全性高:数据存储在一个中心位置,便于实施统一的安全措施,如访问控制、加密等,能够更好地保护数据免受未经授权的访问和攻击。
易于标准化和集成:所有数据集中管理,更容易进行数据的标准化处理,提高数据的质量和可用性。同时,与其他系统进行集成更加便利,易于实现数据的共享和交互。
缺点:
系统可扩展性差:所有的数据都存储在一个地方,当数据量不断增长时,系统的存储和处理能力会受到限制。如果需要扩展系统,可能需要进行大量的硬件和软件升级,成本较高,且扩展的难度较大。
单点故障风险高:系统存在单点故障的风险,如果中心服务器出现故障,如硬件故障、软件故障、网络故障等,整个系统将无法正常运行,会导致业务中断,影响系统的可用性。
数据备份复杂且耗时:由于所有数据都集中存储,数据量可能非常庞大,进行数据备份时需要处理大量的数据,备份过程会变得非常复杂和耗时,对备份设备的性能和存储空间要求也较高。
数据迁移困难:如果需要将数据迁移到其他地方,例如更换数据库系统或迁移到不同的云服务提供商,由于数据集中在一个地方,数据迁移的过程可能会涉及到大量的数据转换和数据清理工作,难度较大且成本较高。
适用场景:
适用于小型企业或业务相对简单的组织,数据量较小,数据处理需求不复杂。例如,一个小型的零售商店,只需要管理库存、销售和客户信息等少量数据,可以采用集中式数据架构。
二·分布式架构
定义:数据分布存储在多个不同的节点上,这些节点可以是物理服务器、虚拟服务器或云服务器。每个节点都可以独立地处理数据,提高了系统的可扩展性和可用性。数据的管理和维护相对复杂,需要考虑数据的同步、一致性和备份等问题。
主要形式:
1.分布式数据库:将数据存储在多个分布式的数据库系统中,通过网络连接进行数据的访问和管理。例如,HBase 是一个基于 Hadoop 的分布式数据库,适用于大规模数据存储和高并发访问的场景。
2.数据仓库:将数据从多个数据源抽取、转换和加载到一个集中的数据仓库中,然后进行数据分析和决策支持。数据仓库可以采用分布式架构,以提高数据的存储和处理能力。例如,Hive 是一个基于 Hadoop 的数据仓库工具,可以处理大规模的结构化数据。
3.数据湖:存储各种类型的数据,包括结构化、半结构化和非结构化数据,以原始格式存储,不进行预先的结构化处理。数据湖可以采用分布式架构,以支持大规模数据的存储和分析。
优点:
高可扩展性:可以通过增加更多的节点(服务器)来轻松扩展系统的存储和处理能力,以应对不断增长的数据量和业务需求。
高可靠性和可用性:系统中的多个节点可以相互备份,当某个节点出现故障时,其他节点可以接管其任务,从而保证系统的持续运行,提高了系统的可靠性和可用性。
性能提升:可以将数据和任务分布到多个节点上并行处理,提高系统的整体性能。
灵活的体系结构:允许不同的节点根据自身的特点和需求进行定制化配置,具有较高的灵活性。
适合分布式管理与控制:
更适合具有地理分布特性的组织或机构使用,允许分布在不同区域、不同级别的各个部门对其自身的数据实行局部控制,降低通信代价,提高响应速度,同时也可以更好地保护局部数据的安全性。
缺点:
数据一致性挑战:由于数据分布在不同的节点上,节点之间的数据同步和协调需要额外的机制和算法来保证,否则可能会出现数据不一致的情况。
管理和运维复杂:分布式系统涉及多个节点的管理和维护,包括节点的部署、配置、监控、故障排查等,管理和运维的难度较大,同时对运维人员的技术要求也较高。
安全性和保密性难度大:在分布式系统中,数据分布在多个节点上,不同节点的安全措施可能不同,难以保证全局数据的安全性。
成本较高:分布式系统需要使用多个节点和相关的网络设备、存储设备等,硬件成本较高。此外,由于管理和运维的复杂性,也会增加系统的运营成本
适用场景:
适用于大型企业或数据处理需求复杂的组织,数据量巨大,需要高可扩展性和高可用性。例如,一个跨国企业,需要管理全球各地的业务数据,采用分布式数据架构可以提高系统的性能和可靠性。需要根据不同的应用场景选择合适架构方式。
了解更多数据仓库与数据集成关干货内容请关注>>>FineDataLink官网
免费试用、获取更多信息,点击了解更多>>>体验FDL功能
相关文章:
集中式架构和分布式架构
数据是企业的核心资产和战略资源。面对爆炸性的数据增长,如何有效地组织、管理和利用数据成为企业的重大挑战。数据架构作为企业数据管理的蓝图和框架,发挥重要作用。本文就来详细说下当下主流的两种数据架构的类型。 首先明确数据架构定义:…...
Redis: 集群高可用之故障转移和集群迁移
故障转移 故障转移,包括自动故障转移和手动故障转移 1 )自动故障转移 Redis 集群,主节点挂了,从节点可以顶上来继续提供服务常用制造故障的两种方式 第一,对其中一个节点进行 SHUTDOWN 操作第二,kill 掉…...
记账软件在线、会计记账网站、财务记账官网、记账云、云记账、在线免费做账以及易舟云财务软件
记账软件在线、会计记账网站、财务记账官网、记账云、云记账、在线免费做账以及易舟云财务软件,以下是一些详细的介绍和推荐: 一、记账软件在线与会计记账网站 记账软件和会计记账网站是现代财务管理中不可或缺的工具,它们能够帮助企业或个人…...
Elasticsearch基础_3.基础操作
文章目录 一、索引操作1.1、创建索引1.2、删除索引 二、映射操作2.1、查看映射2.2、扩展映射 三、文档操作3.1、单条写入文档3.2、更新单条文档3.3、查看单条文档3.4、删除单条文档3.5、根据条件删除文档 一、索引操作 1.1、创建索引 PUT /${index_name} {"settings&quo…...
PHP永久性Cookie的含义
PHP中的永久性Cookie(也称为持久性Cookie)是指在用户的计算机上存储的一种持久性的HTTP Cookie。与常规的临时Cookie不同,永久性Cookie在浏览器关闭后依然保留,并且可以在用户下次访问该网站时被读取和使用。 主要特点 持久存储…...
瑜伽培训行业为何要搭建自己的专属知识付费小程序平台?集师知识付费系统 集师知识付费小程序 集师知识服务系统 集师线上培训系统
在当今快节奏的生活中,瑜伽作为一种舒缓压力、增强体质的生活方式,受到了越来越多人的青睐。瑜伽培训行业也随之蓬勃发展,但如何在激烈的市场竞争中脱颖而出,成为众多瑜伽培训机构面临的一大挑战。搭建自己的专属知识付费小程序平…...
FFT 分析进阶-笔记
FFT 分析进阶 边界不连续与泄漏效应解决方法增加窗函数海宁窗与哈布什窗混叠效应频率高到什么程度会出现混叠现象呢?那我们有办法去应对这个混叠吗?经典平均指数平均关于结果的显示模式FFT计算的三个常见的范例计算FFT图谱中某一段的总值,图中…...
毕业设计_基于springboot+layui+mybatisPlus的中小型仓库物流管理系统源码+SQL+教程+可运行】41004
毕业设计_基于springbootlayuimybatisPlus的中小型仓库物流管理系统源码SQL教程可运行】41004 下载地址: https://download.csdn.net/download/qq_24428851/89843203 技术栈 后端:springboot、mybatis-plus、shiro 前端:layUI 存储&…...
ROS基础入门——实操教程
ROS基础入门——实操教程 前言 本教程实操为主,少说书。可供参考的文档中详细的记录了ROS的实操和理论,只是过于详细繁杂了,看得脑壳疼,于是做了这个笔记。 Ruby Rose,放在这里相当合理 本文初编辑于2024年10月4日 C…...
etcd 快速入门
简介 随着go与kubernetes的大热,etcd作为一个基于go编写的分布式键值存储,逐渐为开发者所熟知,尤其是其还作为kubernetes的数据存储仓库,更是引起广泛专注。 本文我们就来聊一聊etcd到底是什么及其工作机制。 首先,…...
Spring MVC__HttpMessageConverter、拦截器、异常处理器、注解配置SpringMVC、SpringMVC执行流程
目录 一、HttpMessageConverter1、RequestBody2、RequestEntity3、ResponseBody4、SpringMVC处理json5、SpringMVC处理ajax6、RestController注解7、ResponseEntity7.1、文件下载7.2、文件上传 二、拦截器1、拦截器的配置2、拦截器的三个抽象方法3、多个拦截器的执行顺序 三、异…...
GAMES101(19节,相机)
相机 synthesis合成成像:比如光栅化,光线追踪,相机是capture捕捉成像, 但是在合成渲染时,有时也会模拟捕捉成像方式(包括一些技术 动态模糊 / 景深等),这时会有涉及很多专有名词&a…...
Django Nginx+uwsgi 安装配置
Django Nginx+uwsgi 安装配置 本文将详细介绍如何在Linux环境下安装和配置Django应用程序,使用Nginx作为Web服务器和uwsgi作为应用程序服务器。我们将覆盖以下主题: 安装Python和相关库安装和配置Django安装Nginx安装和配置uwsgi配置Nginx以使用uwsgi测试和调试1. 安装Pytho…...
oracle数据备份和导入
一、数据导出 创建目录对象: CREATE DIRECTORY dpump_dir AS /path/to/your/directory;授予权限: GRANT READ, WRITE ON DIRECTORY dpump_dir TO test_user; #导出的用户导出全库数据 expdp your_user/your_password DIRECTORYdpump_dir DUMPFILEfu…...
C++ | Leetcode C++题解之第452题用最少数量的箭引爆气球
题目: 题解: class Solution { public:int findMinArrowShots(vector<vector<int>>& points) {if (points.empty()) {return 0;}sort(points.begin(), points.end(), [](const vector<int>& u, const vector<int>&…...
react-问卷星项目(3)
项目实战 React Hooks 缓存,性能优化,提升时间效率,但是不要为了技术而优化,应该是为了业务而进行优化 内置Hooks保证基础功能,灵活配合实现业务功能,抽离公共部分,自定义Hooks或者第三方&am…...
69 BERT预训练_by《李沐:动手学深度学习v2》pytorch版
系列文章目录 文章目录 系列文章目录NLP里的迁移学习Bert的动机Bert架构对输入的修改五、预训练任务1、2、3、 六、1、2、3、 七、1、2、3、 八、1、2、3、 NLP里的迁移学习 之前是使用预训练好的模型来抽取词、句子的特征,例如 word2vec 或语言模型这种非深度学习…...
Java报错输出的信息究竟是什么?
Java报错输出的信息究竟是什么? 本篇会带大家了解一下java运行时报错输出的信息内容,简单学习一下虚拟机内存中Java虚拟机栈的工作方式以及栈帧中所存储的信息内容 异常信息 当你的程序运行报错时,你是否会好奇打印出来的那一大坨红色的究竟…...
解表之紫苏
** 声明:本文介绍的中药仅供学习使用,请勿擅自使用,否则后果自负!!!因水平有限,如有不当之处,请批评指正!!!!图片来源网络࿰…...
JavaScript数据类型
目录 JavaScripit数据类型 原始类型(Primitive Types) 1 Undefined 特点 实例 2 Null 实例 3 Boolean 重点: 常用falsy情况: 思考 4 Number,BigInt 实例 特点 NaN 5 String 在JavaScript中表示字符串有三种表示方…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
