当前位置: 首页 > news >正文

随想录Day45--动态规划:70. 爬楼梯 (进阶), 322. 零钱兑换, 279.完全平方数

70爬楼梯这道题之前已经做过,是动态规划思想的入门,想要爬上第n层阶梯,看爬上n-1层的方法和n-2层的方法共有多少种,两个相加就是爬上n层阶梯的方法。这里扩展到每次可以爬k层,这样就是一个动态规划问题。因为每次可以爬1-k层,所以把k作为物品,爬到n层作为背包容量,爬的楼梯数k可以重复,所以是个完全背包问题。定义数组dp[i],dp[i]表示爬上i层阶梯的方法数。初始化dp[0]= 1,因为爬上第0层的方法为1,也就是不用动。因为爬楼梯的层数可以重复,所以我理解成排列问题,遍历顺序先背包容量再物品,物品再内层循环,每次就都可以从最小开始,可以重复。

322零钱兑换,目标数是背包容量,零钱数组coins是物品,dp[i]表示的是零钱的个数。初始化dp[0] = 0,因为0元的兑换不需要硬币,所以是0.因为零钱是可以重复使用的,所以是个完全背包问题,但是零钱是个组合问题,比如说6块钱可以用5元和1元零钱兑换,也可以用1元和5元兑换(和5元,1元的顺序不同),但是是同一种方法,所以这是组合问题。组合问题要先遍历物品再遍历背包。

79完全平方数,整数n时背包容量,物品是完全平方数,dp[i]表示和为n的最小物品数量。这里完全平方数可以重复使用,并且是个组合问题,和完全平方数的顺序无关,所以是个多重背包的组合问题。需要先遍历物品,再遍历背包容量。

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45
class Solution {public int climbStairs(int n) {// int [] dp = new int[3];// if(n < 3){//     return n;// }// dp[0] = 1;// dp[1] = 2;// for(int i = 2; i < n; i++){//     dp[2] = dp[1] + dp[0];//     dp[0] = dp[1];//     dp[1] = dp[2];// }// return dp[2];int[] dp = new int[n + 1];int[] weigh = {1, 2};dp[0] = 1;for(int i = 0; i <= n; i++){for(int j = 0; j < weigh.length; j++){if(i >= weigh[j]){dp[i] += dp[i - weigh[j]];}}}return dp[n];}
}

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104
class Solution {public int coinChange(int[] coins, int amount) {int len = coins.length;int[] dp = new int[amount + 1];dp[0] = 0;for(int i = 1; i <= amount; i++){dp[i] = amount + 1;}for(int i = 0; i < len; i++){for(int j = coins[i]; j <= amount; j++){dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}if(dp[amount] > amount){return -1;}return dp[amount];}
}

279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

 

提示:

  • 1 <= n <= 104
class Solution {public int numSquares(int n) {int[] dp = new int[n + 1];for(int i = 0; i <= n; i++){dp[i] = n;}dp[0] = 0;for(int i = 1; i * i <= n ; i++){for(int j = i * i; j <= n; j++){dp[j] = Math.min(dp[j], dp[j - i * i] + 1);}}return dp[n];}
}

相关文章:

随想录Day45--动态规划:70. 爬楼梯 (进阶), 322. 零钱兑换, 279.完全平方数

70爬楼梯这道题之前已经做过&#xff0c;是动态规划思想的入门&#xff0c;想要爬上第n层阶梯&#xff0c;看爬上n-1层的方法和n-2层的方法共有多少种&#xff0c;两个相加就是爬上n层阶梯的方法。这里扩展到每次可以爬k层&#xff0c;这样就是一个动态规划问题。因为每次可以爬…...

原理+案例,关于主从延迟,一篇文章给你讲明白!

前言 在生产环境中&#xff0c;为了满足安全性&#xff0c;高可用性以及高并发等方面的需求&#xff0c;基本上采用的MySQL数据库架构都是MHA、MGR等&#xff0c;最低也得是一主一从的架构&#xff0c;搭配自动切换脚本&#xff0c;实现故障自动切换。 上述架构都是通过集群主…...

QT开发笔记(Camera)

Camera 此章节例程适用于 Ubuntu 和正点原子 I.MX6U 开发板&#xff0c;不适用于 Windows&#xff08;需要自行修改 才能适用 Windows&#xff0c;Windows 上的应用不在我们讨论范围&#xff09;! 资源简介 正点原子 I.MX6U 开发板底板上有一路“CSI”摄像头接口。支持正点原…...

从C++的角度讲解C#容器

讲解C#容器的文章网上一搜一大把&#xff0c;作为一名C程序员如何高效学习C#容器呢&#xff0c;其实学语言如果能讲到这点就能触类旁通&#xff0c;举一反三&#xff0c;那效果是最好的问题市面上没有这样的书籍&#xff0c;那就跟着老白来一起从C的角度去讲解C#容器1.List<…...

React组件库实践:React + Typescript + Less + Rollup + Storybook

背景 原先在做低代码平台的时候&#xff0c;刚好有搭载React组件库的需求&#xff0c;所以就搞了一套通用的React组件库模版。目前通过这套模板也搭建过好几个组件库。 为了让这个模板更干净和通用&#xff0c;我把所有和低代码相关的代码都剔除了&#xff0c;只保留最纯粹的…...

c++ atomic

文章目录why atomic?sequentially consistent atomicRelaxed memory modelswhy atomic? 当我们有一片内存空间S,线程A正在往S里写数据,这个时候线程B突然往S中做了操作,导致线程A的操作结果变得不可预知(对线程A来说),这种情况换句话说叫做data race,我们一般的操作时上锁,在…...

要想孩子写作文没烦恼?建议家长这样做

说起语文学习&#xff0c;就不得不提作文。作为语文学习中的重中之重&#xff0c;作文写作一直是压在学生和家长身上的一块“心头大石”。发现很多孩子在写作文时&#xff0c;往往存在四大问题&#xff1a;写不出、不生动、流水账、太空洞。如今&#xff0c;孩子怕写作文&#…...

基于Python的高光谱图像分析教程

1、前言超光谱图像 (HSI) 分析因其在从农业到监控的各个领域的应用而成为人工智能 (AI) 研究的前沿领域之一。 该领域正在发表许多研究论文&#xff0c;这使它变得更加有趣&#xff01; 和“对于初学者来说&#xff0c;在 HSI 上开始模式识别和机器学习是相当麻烦的”&#xff…...

【图神经网络】从0到1使用PyG手把手创建异构图

从0到1用PyG创建异构图异构图创建异构图电影评分数据集MovieLens建立二分图数据集转换为可训练的数据集建立异构图神经网络以OGB数据集为例HeteroData中常用的函数将简单图神经网络转换为异质图神经网络GraphGym的使用PyG中常用的卷积层参考资料在现实中需要对 多种类型的节点以…...

2023美赛春季赛思路分析汇总

将在本帖更新汇总2023美赛春季赛两个赛题思路&#xff0c;大家可以点赞收藏&#xff01; 2023美赛春季赛各赛题全部解题参考思路资料模型代码等全部实时更新&#xff01;第一时间获取全部美赛春季赛相关资料&#xff01; 目前思路整理仅为部分&#xff0c;请大家耐心等待&…...

GPT4国内镜像站

GPT-4介绍GPT-4是OpenAI发布的最先进的大型语言模型&#xff0c;是ChatGPT模型的超级进化版本。与ChatGPT相比&#xff0c;GPT-4的推理能力、复杂问题的理解能力、写代码能力得到了极大的强化&#xff0c;是当前人工智能领域&#xff0c;最有希望实现通用人工智能的大模型。但G…...

代码随想录算法训练营第四十八天| 198 打家劫舍 213 打家劫舍II 337 打家劫舍III

代码随想录算法训练营第四十八天| 198 打家劫舍 213 打家劫舍II 337 打家劫舍III LeetCode 198 打家劫舍 题目: 198.打家劫舍 动规五部曲&#xff1a; 确定dp数组以及下标的含义 dp[i]&#xff1a;考虑下标i&#xff08;包括i&#xff09;以内的房屋&#xff0c;最多可以偷…...

飞桨DeepXDE用例验证及评估

在之前发布的文章中&#xff0c;我们介绍了飞桨全量支持业内优秀科学计算深度学习工具 DeepXDE。本期主要介绍基于飞桨动态图模式对 DeepXDE 中 PINN 方法用例实现、验证及评估的具体流程&#xff0c;同时提供典型环节的代码&#xff0c;旨在帮助大家更加高效地基于飞桨框架进行…...

telegram连接本地Proxy连接不上

1.ClashX开启允许局域网连接。 2.重启ClashX和Telegram...

【分布式版本控制系统Git】| 国内代码托管中心-Gitee、自建代码托管平台-GitLab

目录 一&#xff1a;国内代码托管中心-码云 1. 码云创建远程库 2. IDEA 集成码云 3. 码云复制 GitHub 项目 二&#xff1a;自建代码托管平台-GitLab 1. GitLab 安装 2. IDEA 集成 GitLab 一&#xff1a;国内代码托管中心-码云 众所周知&#xff0c;GitHub 服务器在国外&…...

【面试】BIO、NIO、AIO面试题

文章目录什么是IO在了解不同的IO之前先了解&#xff1a;同步与异步&#xff0c;阻塞与非阻塞的区别什么是BIO什么是NIO什么是AIO什么NettyBIO和NIO、AIO的区别IO流的分类按照读写的单位大小来分&#xff1a;按照实际IO操作来分&#xff1a;按照读写时是否直接与硬盘&#xff0c…...

C语言实现拼图求解

题目: 有如下的八种拼图块,每块都是由八块小正方块构成, 这些拼图块刚好可以某种方式拼合放入给定的目标形状, 请以C或C++编程,自动求解 一种拼图方式 目标拼图: 本栏目适合想要深入了解无向图、深度优先算法、编程语句如何实现算法、想要去接拼图算法的小伙伴。...

python --获取本机屏幕分辨率

pywin32 方法一 使用 win32api.GetDeviceCaps() 方法来获取显示器的分辨率。 使用 win32api.GetDC() 方法获取整个屏幕的设备上下文句柄&#xff0c;然后使用 win32api.GetDeviceCaps() 方法获取水平和垂直方向的分辨率。最后需要调用 win32api.ReleaseDC() 方法释放设备上下…...

Java多态

目录 1.多态是什么&#xff1f; 2.多态的条件 3.重写 3.1重写的概念 3.2重写的作用 3.3重写的规则 4.向上转型与向下转型 4.1向上转型 4.2向下转型 5.多态的优缺点 5.1 优点 5.2 缺点 面向对象程序三大特性&#xff1a;封装、继承、多态。 1.多态是什么&#xff1…...

绝对路径和相对路径

1.绝对路径&#xff1a;从根目录为起点到某一个目录的路径 使用计算机时要找到需要的文件就必须知道文件的位置&#xff0c;表示文件的位置的方式就是路径&#xff0c;例如只要看到这个路径&#xff1a;c:/website/img/photo.jpg我们就知道photo.jpg文件是在c盘的website目录下…...

Linux第二次总结

Linux阶段总结 OSI模型&#xff1a;应用层、表示层、会话层、传输层、网络层、数据链路层、物理层 路由器的工作原理&#xff1a;最佳路径选择 三次握手四次挥手&#xff1a;... shell是翻译官把人类语言翻译成二进制语言 Tab作用&#xff1a;自动补齐、确认输入是否有误 …...

算法:贪婪算法、分而治之

算法&#xff1a;贪婪算法、分而治之 文章目录1.贪婪算法计数硬币实例12.分而治之分割/歇征服/解决合并/合并实例23.动态规划对照实例34.基本概念算法数据定义数据对象内置数据类型派生数据类型基本操作1.贪婪算法 设计算法以实现给定问题的最佳解决方案。在贪婪算法方法中&am…...

462. 最小操作次数使数组元素相等 II——【Leetcode每日一题】

462. 最小操作次数使数组元素相等 II 给你一个长度为 n 的整数数组 nums &#xff0c;返回使所有数组元素相等需要的最小操作数。 在一次操作中&#xff0c;你可以使数组中的一个元素加 1 或者减 1 。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&#xff1a;2 …...

对数据库的库及表的操作

全篇在MySQL操作下完成 在此之前&#xff0c;先介绍一下&#xff0c;字段、列类型及属性。 一、什么是字段、列类型、属性 (1)字段&#xff0c;一张表中列的名称&#xff1b;列类型&#xff0c;该列存储数据的类型&#xff1b;属性&#xff0c;描述列类型的特征。 …...

final类又没实现接口应该用哪一种代理, jdk动态代理还是cglib代理

jdk动态代理还是cglib代理&#x1f9d9;jdk动态代理和cglib代理的示例JDK动态代理原理CGLIB代理final类又没实现接口应该用哪一种代理, jdk动态代理还是cglib代理滚滚长江东逝水&#xff0c;浪花淘尽英雄。——唐代杨炯《临江仙》 jdk动态代理和cglib代理的示例 以下是一个使用…...

使用StaMPS_Visualizer

0 前言 StaMPS-Visualizer &#xff1a;由thho开发的用于可视化由StaMPS / MTI处理的DInSAR结果。 github地址&#xff1a;StaMPS-Visualizer 使用StaMPS_Visualizer需要配置好StaMPS&#xff0c;并安装好R和Rstudio Ubuntu中安装StaMPS StaMPS-Visualizer 安装步骤–在linux…...

高并发-高性能-高可用-结论版

文章目录上万的并发需要多少台web服务器一般单机能处理200请求&#xff0c;为何redis单机却能处理上万请求单线程每秒能处理&#xff08;发送/响应&#xff09;的http请求数三高的定义高并发的解决方案高性能的解决方案高可用的解决方案参考文章上万的并发需要多少台web服务器 …...

数智转型助力建筑业全产业链升级,你了解多少?

关于数智转型&#xff0c;指的是基于数字化技术和数据驱动的思维方式&#xff0c;将企业的管理、业务和服务进行全面的升级和改造&#xff0c;从而帮助实现企业的数字化转型和升级。通过数字技术和数据分析来提高企业的效率、创新能力和竞争力&#xff0c;进一步提高企业的市场…...

Python网络设备脚本中经常使用的connecthandler和telnetlib是什么意思?

你好&#xff0c;这里是网络技术联盟站。 在昨天的文章中&#xff0c;有小伙伴提到对这两天瑞哥提供的Python脚本中涉及的connecthandler和telnetlib两个模块不是太了解&#xff0c;想要学习一下&#xff1a; 今天瑞哥就安排上&#xff01; 其实这两个模块是Python与网络设备…...

你真的会写 git commit message 吗?

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;蚂蚁集团高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《EffectiveJava》独家解析》专栏作者。 热门文章推荐…...