随想录Day45--动态规划:70. 爬楼梯 (进阶), 322. 零钱兑换, 279.完全平方数
70爬楼梯这道题之前已经做过,是动态规划思想的入门,想要爬上第n层阶梯,看爬上n-1层的方法和n-2层的方法共有多少种,两个相加就是爬上n层阶梯的方法。这里扩展到每次可以爬k层,这样就是一个动态规划问题。因为每次可以爬1-k层,所以把k作为物品,爬到n层作为背包容量,爬的楼梯数k可以重复,所以是个完全背包问题。定义数组dp[i],dp[i]表示爬上i层阶梯的方法数。初始化dp[0]= 1,因为爬上第0层的方法为1,也就是不用动。因为爬楼梯的层数可以重复,所以我理解成排列问题,遍历顺序先背包容量再物品,物品再内层循环,每次就都可以从最小开始,可以重复。
322零钱兑换,目标数是背包容量,零钱数组coins是物品,dp[i]表示的是零钱的个数。初始化dp[0] = 0,因为0元的兑换不需要硬币,所以是0.因为零钱是可以重复使用的,所以是个完全背包问题,但是零钱是个组合问题,比如说6块钱可以用5元和1元零钱兑换,也可以用1元和5元兑换(和5元,1元的顺序不同),但是是同一种方法,所以这是组合问题。组合问题要先遍历物品再遍历背包。
79完全平方数,整数n时背包容量,物品是完全平方数,dp[i]表示和为n的最小物品数量。这里完全平方数可以重复使用,并且是个组合问题,和完全平方数的顺序无关,所以是个多重背包的组合问题。需要先遍历物品,再遍历背包容量。
70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
提示:
1 <= n <= 45
class Solution {public int climbStairs(int n) {// int [] dp = new int[3];// if(n < 3){// return n;// }// dp[0] = 1;// dp[1] = 2;// for(int i = 2; i < n; i++){// dp[2] = dp[1] + dp[0];// dp[0] = dp[1];// dp[1] = dp[2];// }// return dp[2];int[] dp = new int[n + 1];int[] weigh = {1, 2};dp[0] = 1;for(int i = 0; i <= n; i++){for(int j = 0; j < weigh.length; j++){if(i >= weigh[j]){dp[i] += dp[i - weigh[j]];}}}return dp[n];}
}
322. 零钱兑换
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins =[1, 2, 5], amount =11输出:3解释:11 = 5 + 5 + 1
示例 2:
输入:coins =[2], amount =3输出:-1
示例 3:
输入:coins = [1], amount = 0 输出:0
提示:
1 <= coins.length <= 121 <= coins[i] <= 231 - 10 <= amount <= 104
class Solution {public int coinChange(int[] coins, int amount) {int len = coins.length;int[] dp = new int[amount + 1];dp[0] = 0;for(int i = 1; i <= amount; i++){dp[i] = amount + 1;}for(int i = 0; i < len; i++){for(int j = coins[i]; j <= amount; j++){dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}if(dp[amount] > amount){return -1;}return dp[amount];}
}
279. 完全平方数
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n =12输出:3 解释:12 = 4 + 4 + 4
示例 2:
输入:n =13输出:2 解释:13 = 4 + 9
提示:
1 <= n <= 104
class Solution {public int numSquares(int n) {int[] dp = new int[n + 1];for(int i = 0; i <= n; i++){dp[i] = n;}dp[0] = 0;for(int i = 1; i * i <= n ; i++){for(int j = i * i; j <= n; j++){dp[j] = Math.min(dp[j], dp[j - i * i] + 1);}}return dp[n];}
}
相关文章:
随想录Day45--动态规划:70. 爬楼梯 (进阶), 322. 零钱兑换, 279.完全平方数
70爬楼梯这道题之前已经做过,是动态规划思想的入门,想要爬上第n层阶梯,看爬上n-1层的方法和n-2层的方法共有多少种,两个相加就是爬上n层阶梯的方法。这里扩展到每次可以爬k层,这样就是一个动态规划问题。因为每次可以爬…...
原理+案例,关于主从延迟,一篇文章给你讲明白!
前言 在生产环境中,为了满足安全性,高可用性以及高并发等方面的需求,基本上采用的MySQL数据库架构都是MHA、MGR等,最低也得是一主一从的架构,搭配自动切换脚本,实现故障自动切换。 上述架构都是通过集群主…...
QT开发笔记(Camera)
Camera 此章节例程适用于 Ubuntu 和正点原子 I.MX6U 开发板,不适用于 Windows(需要自行修改 才能适用 Windows,Windows 上的应用不在我们讨论范围)! 资源简介 正点原子 I.MX6U 开发板底板上有一路“CSI”摄像头接口。支持正点原…...
从C++的角度讲解C#容器
讲解C#容器的文章网上一搜一大把,作为一名C程序员如何高效学习C#容器呢,其实学语言如果能讲到这点就能触类旁通,举一反三,那效果是最好的问题市面上没有这样的书籍,那就跟着老白来一起从C的角度去讲解C#容器1.List<…...
React组件库实践:React + Typescript + Less + Rollup + Storybook
背景 原先在做低代码平台的时候,刚好有搭载React组件库的需求,所以就搞了一套通用的React组件库模版。目前通过这套模板也搭建过好几个组件库。 为了让这个模板更干净和通用,我把所有和低代码相关的代码都剔除了,只保留最纯粹的…...
c++ atomic
文章目录why atomic?sequentially consistent atomicRelaxed memory modelswhy atomic? 当我们有一片内存空间S,线程A正在往S里写数据,这个时候线程B突然往S中做了操作,导致线程A的操作结果变得不可预知(对线程A来说),这种情况换句话说叫做data race,我们一般的操作时上锁,在…...
要想孩子写作文没烦恼?建议家长这样做
说起语文学习,就不得不提作文。作为语文学习中的重中之重,作文写作一直是压在学生和家长身上的一块“心头大石”。发现很多孩子在写作文时,往往存在四大问题:写不出、不生动、流水账、太空洞。如今,孩子怕写作文&#…...
基于Python的高光谱图像分析教程
1、前言超光谱图像 (HSI) 分析因其在从农业到监控的各个领域的应用而成为人工智能 (AI) 研究的前沿领域之一。 该领域正在发表许多研究论文,这使它变得更加有趣! 和“对于初学者来说,在 HSI 上开始模式识别和机器学习是相当麻烦的”ÿ…...
【图神经网络】从0到1使用PyG手把手创建异构图
从0到1用PyG创建异构图异构图创建异构图电影评分数据集MovieLens建立二分图数据集转换为可训练的数据集建立异构图神经网络以OGB数据集为例HeteroData中常用的函数将简单图神经网络转换为异质图神经网络GraphGym的使用PyG中常用的卷积层参考资料在现实中需要对 多种类型的节点以…...
2023美赛春季赛思路分析汇总
将在本帖更新汇总2023美赛春季赛两个赛题思路,大家可以点赞收藏! 2023美赛春季赛各赛题全部解题参考思路资料模型代码等全部实时更新!第一时间获取全部美赛春季赛相关资料! 目前思路整理仅为部分,请大家耐心等待&…...
GPT4国内镜像站
GPT-4介绍GPT-4是OpenAI发布的最先进的大型语言模型,是ChatGPT模型的超级进化版本。与ChatGPT相比,GPT-4的推理能力、复杂问题的理解能力、写代码能力得到了极大的强化,是当前人工智能领域,最有希望实现通用人工智能的大模型。但G…...
代码随想录算法训练营第四十八天| 198 打家劫舍 213 打家劫舍II 337 打家劫舍III
代码随想录算法训练营第四十八天| 198 打家劫舍 213 打家劫舍II 337 打家劫舍III LeetCode 198 打家劫舍 题目: 198.打家劫舍 动规五部曲: 确定dp数组以及下标的含义 dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷…...
飞桨DeepXDE用例验证及评估
在之前发布的文章中,我们介绍了飞桨全量支持业内优秀科学计算深度学习工具 DeepXDE。本期主要介绍基于飞桨动态图模式对 DeepXDE 中 PINN 方法用例实现、验证及评估的具体流程,同时提供典型环节的代码,旨在帮助大家更加高效地基于飞桨框架进行…...
telegram连接本地Proxy连接不上
1.ClashX开启允许局域网连接。 2.重启ClashX和Telegram...
【分布式版本控制系统Git】| 国内代码托管中心-Gitee、自建代码托管平台-GitLab
目录 一:国内代码托管中心-码云 1. 码云创建远程库 2. IDEA 集成码云 3. 码云复制 GitHub 项目 二:自建代码托管平台-GitLab 1. GitLab 安装 2. IDEA 集成 GitLab 一:国内代码托管中心-码云 众所周知,GitHub 服务器在国外&…...
【面试】BIO、NIO、AIO面试题
文章目录什么是IO在了解不同的IO之前先了解:同步与异步,阻塞与非阻塞的区别什么是BIO什么是NIO什么是AIO什么NettyBIO和NIO、AIO的区别IO流的分类按照读写的单位大小来分:按照实际IO操作来分:按照读写时是否直接与硬盘,…...
C语言实现拼图求解
题目: 有如下的八种拼图块,每块都是由八块小正方块构成, 这些拼图块刚好可以某种方式拼合放入给定的目标形状, 请以C或C++编程,自动求解 一种拼图方式 目标拼图: 本栏目适合想要深入了解无向图、深度优先算法、编程语句如何实现算法、想要去接拼图算法的小伙伴。...
python --获取本机屏幕分辨率
pywin32 方法一 使用 win32api.GetDeviceCaps() 方法来获取显示器的分辨率。 使用 win32api.GetDC() 方法获取整个屏幕的设备上下文句柄,然后使用 win32api.GetDeviceCaps() 方法获取水平和垂直方向的分辨率。最后需要调用 win32api.ReleaseDC() 方法释放设备上下…...
Java多态
目录 1.多态是什么? 2.多态的条件 3.重写 3.1重写的概念 3.2重写的作用 3.3重写的规则 4.向上转型与向下转型 4.1向上转型 4.2向下转型 5.多态的优缺点 5.1 优点 5.2 缺点 面向对象程序三大特性:封装、继承、多态。 1.多态是什么࿱…...
绝对路径和相对路径
1.绝对路径:从根目录为起点到某一个目录的路径 使用计算机时要找到需要的文件就必须知道文件的位置,表示文件的位置的方式就是路径,例如只要看到这个路径:c:/website/img/photo.jpg我们就知道photo.jpg文件是在c盘的website目录下…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
