当前位置: 首页 > news >正文

Python知识点:如何使用Spark与PySpark进行分布式数据处理

开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!


Apache Spark 是一个强大的分布式数据处理系统,而 PySpark 是 Spark 的 Python 接口,它允许使用 Python 进行大数据处理和分析。以下是如何使用 Spark 和 PySpark 进行分布式数据处理的指南。

环境搭建

首先,你需要安装 Spark 和 PySpark。可以通过 Spark 官方网站下载并按照指南进行安装。安装后,可以通过简单的 Python 脚本来测试 PySpark 是否正确安装。

基本概念

  • RDD(Resilient Distributed Dataset):Spark 的核心数据结构,代表分布式的不可变数据集,支持并行操作和容错 。
  • DataFrame:类似于表格的数据结构,提供了一种高级抽象,支持 SQL 查询和复杂操作。
  • SparkContext:是与 Spark 进行交互的入口,负责连接 Spark 集群和管理资源。

数据准备

使用 PySpark 可以从多种数据源读取数据,如文本文件、CSV、JSON、Parquet 等。数据可以读取为 RDD 或 DataFrame。

from pyspark.sql import SparkSession# 创建 SparkSession
spark = SparkSession.builder.appName("DataProcessing").getOrCreate()# 从 CSV 文件读取数据
data = spark.read.csv("data.csv", header=True, inferSchema=True)

数据处理

PySpark 提供了丰富的 API 来进行数据过滤、转换、聚合等操作。你可以使用 SQL 查询或者 DataFrame API 来处理数据。

# 过滤数据
filtered_data = data.filter(data["age"] > 30)# 转换数据
transformed_data = filtered_data.withColumn("age_group", (data["age"] < 40).alias("Young").otherwise("Old"))# 聚合数据
aggregated_data = transformed_data.groupBy("age_group").count()

数据分析

PySpark 还提供了统计函数和机器学习库来进行数据分析和模型构建。

from pyspark.ml.stat import Correlation# 计算相关系数
correlation_matrix = Correlation.corr(transformed_data, "features").head()

性能优化

在分布式计算中,性能优化是关键。可以通过调整分区数、使用广播变量、累加器等技术来优化 PySpark 程序。

# 使用广播变量
broadcast_var = spark.sparkContext.broadcast(my_variable)
result = data.rdd.map(lambda x: x + broadcast_var.value)# 使用累加器
counter = spark.sparkContext.accumulator(0)
data.rdd.foreach(lambda x: counter.add(1))

流处理

PySpark 支持实时数据流处理,可以使用 Spark Streaming 或 Structured Streaming 来处理实时数据。

from pyspark.streaming import StreamingContext# 创建 StreamingContext
ssc = StreamingContext(sparkContext, batchDuration=1)# 从 Kafka 获取数据流
stream = ssc.kafkaStream(topics=["topic"], kafkaParams={"bootstrap.servers": "localhost:9092"})# 实时处理数据流
result = stream.filter(lambda x: x % 2 == 0)# 输出结果
result.pprint()# 启动 StreamingContext
ssc.start()
ssc.awaitTermination()

结论

通过掌握 PySpark,你可以有效地处理和分析大规模数据集。无论是数据科学家还是工程师,PySpark 都是大数据处理的有力工具 。


最后,说一个好消息,如果你正苦于毕业设计,点击下面的卡片call我,赠送定制版的开题报告和任务书,先到先得!过期不候!

相关文章:

Python知识点:如何使用Spark与PySpark进行分布式数据处理

开篇&#xff0c;先说一个好消息&#xff0c;截止到2025年1月1日前&#xff0c;翻到文末找到我&#xff0c;赠送定制版的开题报告和任务书&#xff0c;先到先得&#xff01;过期不候&#xff01; Apache Spark 是一个强大的分布式数据处理系统&#xff0c;而 PySpark 是 Spark …...

低功耗4G模组Air780E之串口通信篇

你对低功耗4G模组Air780E有多少了解&#xff1f; 今天我们来讲解低功耗4G模组Air780E的串口通信的基本用法&#xff0c;小伙伴们&#xff0c;学起来吧&#xff01; 一、硬件准备 780E开发板一套&#xff0c;包括天线、USB数据线。 USB转TTL工具或线&#xff08;例如ch340、…...

Python | Leetcode Python题解之第455题分发饼干

题目&#xff1a; 题解&#xff1a; class Solution:def findContentChildren(self, g: List[int], s: List[int]) -> int:g.sort()s.sort()m, n len(g), len(s)i j count 0while i < m and j < n:while j < n and g[i] > s[j]:j 1if j < n:count 1i …...

交叠型双重差分法

交叠型双重差分法&#xff08;Staggered Difference-in-Differences, Staggered DiD&#xff09;是一种扩展的双重差分&#xff08;Difference-in-Differences, DiD&#xff09;方法&#xff0c;用于处理多个时间点的政策干预或处理组&#xff08;treatment group&#xff09;并…...

Java中的数据合并与拆分:使用Stream API实现数据的灵活处理

Java中的数据合并与拆分&#xff1a;使用Stream API实现数据的灵活处理 大家好&#xff0c;我是微赚淘客返利系统3.0的小编&#xff0c;是个冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在Java开发中&#xff0c;数据处理是最基础的操作之一&#xff0c;而在面对…...

Arthas(阿尔萨斯)

Arthas Arthas可以为你做什么&#xff1f; 安装下载 //Linux环境下 wget https://alibaba.github.io/arthas/arthas-boot.jar //Windows环境下可以直接去官网下载压缩包 https://arthas.aliyun.com/doc/download.html//启动命令 java -jar arthas-boot.jar 启动阿尔萨斯&#…...

黑马linux笔记(转载)

学习链接 视频链接&#xff1a;黑马程序员新版Linux零基础快速入门到精通 原文链接&#xff1a;黑马程序员新版Linux零基础快速入门到精通——学习笔记 黑马Linux笔记 文章目录 学习链接01初识Linux1.1、操作系统概述1.1.1、硬件和软件1.1.2、操作系统1.1.3、常见操作系统 1.…...

SQL Server—通配符(模糊查询)详解

SQL Server—通配符(模糊查询)详解 在SQL Server中&#xff0c;通配符是一种特殊的符号&#xff0c;用于在LIKE运算符中搜索模式。SQL Server支持三种通配符&#xff1a;百分号&#xff08;%&#xff09;&#xff0c;下划线&#xff08;_&#xff09;和方括号&#xff08;[]&am…...

软考系统分析师知识点二:经济管理

前言 今年报考了11月份的软考高级&#xff1a;系统分析师。 考试时间为&#xff1a;11月9日。 倒计时&#xff1a;35天。 目标&#xff1a;优先应试&#xff0c;其次学习&#xff0c;再次实践。 复习计划第一阶段&#xff1a;扫平基础知识点&#xff0c;仅抽取有用信息&am…...

C语言自定义类型联合和枚举(25)

文章目录 前言一、联合体联合体的声明联合体的特点联合体和结构体内存布局对比联合体的大小计算联合体的实际使用样例礼品兑换单判断当前机器是大端还是小端 二、枚举枚举的定义枚举类型的声明枚举类型的优点枚举类型的使用 总结 前言 关于自定义类型除了我们常用的结构体&…...

Kafka 的重平衡问题详解及解决方案

引言 Kafka 是目前非常流行的分布式消息队列系统&#xff0c;被广泛应用于流数据处理、日志分析、事件驱动架构等场景中。Kafka 的高吞吐量和分布式架构在应对海量数据传输方面具有显著优势。然而&#xff0c;Kafka 在处理消费者组时&#xff0c;会面临一个核心问题——重平衡…...

比较GPT4比较正确的回复的提问方式和比较失败的提问方式之间的区别?

比较GPT4比较正确的回复的提问方式和比较失败的提问方式之间的区别&#xff1f; 正确提问失败提问异同 正确提问 ####一堆python源码############# 这里如何根据数据是新建还是更新来调用不同的save方法&#xff1f; 失败提问 ####一堆python源码############# 为什么在修改…...

jmeter学习(1)线程组与发送请求

1、线程组 执行顺序 &#xff1a;setUp线程组 > 线程组 > tearDown线程组 2、 发送请求 可以发送http、java、dubbo 请求等 下面讲解发送http 1&#xff09;Http请求默认值 作用范围是该线程组下的所有HTTP请求&#xff0c;如果http请求设置的与默认值冲突&#xff0…...

【小技巧】mysql 判断表字段是否存在 删除字段 sql脚本

MySQL 判断表字段是否存在 删除字段 sql脚本 下面是一个包含插入和更新操作的流程&#xff1a; -- 先尝试插入数据 INSERT IGNORE INTO user_info (last_name, first_name) VALUES (x, y);-- 如果插入成功&#xff0c;ROW_COUNT() 返回 1&#xff0c;否则返回 0 IF ROW_COUNT…...

低代码革命:重塑工业互联网的未来版图

在数字化转型的浪潮中&#xff0c;低代码应用正以前所未有的速度席卷各行各业&#xff0c;尤其是在工业互联网领域&#xff0c;它正悄然改变着企业的技术架构和业务模式。本文将深入探讨低代码应用如何成为工业互联网的技术趋势&#xff0c;并展望其未来的辉煌前景&#xff0c;…...

KNN算法

KNN算法 一 KNN算法介绍二 KNN算法API2.1 KNeighborsClassifier 分类算法2.2 KNeighborsRegressor 回归算法 三 两个经典案例3.1 鸢尾花案例3.2 手写数字识别案例 一 KNN算法介绍 K-近邻算法&#xff08;K Nearest Neighbor&#xff0c;简称KNN&#xff09;.比如根据你的“邻居…...

TS 中类型的继承

在 TypeScript&#xff08;TS&#xff09;中&#xff0c;类型的继承通常通过接口&#xff08;Interfaces&#xff09;和类&#xff08;Classes&#xff09;来实现。接口提供了一种定义对象形状的方式&#xff0c;而类则提供了一种创建对象实例的方式。以下是如何在 TypeScript …...

在VS code 中部署C#和avalonia开发环境

要在 Mac 的 VS Code 中配置 C# 和 Avalonia 的开发环境&#xff0c;您可以按照以下步骤进行&#xff1a; 1. 安装 .NET SDK 下载 .NET SDK&#xff1a; 访问 .NET 下载页面。选择适用于 macOS 的最新稳定版本的 .NET SDK&#xff0c;并下载安装程序。安装 .NET SDK&#xff1…...

Windows删除service服务

Windows删除service服务 找到命令提示符&#xff1a; 右键&#xff0c;以管理员身份运行 输入&#xff1a; sc delete 服务名 Windows根据TCP端口号查找进程PID再kill进程_windows tcpkill-CSDN博客文章浏览阅读5.3k次&#xff0c;点赞42次&#xff0c;收藏104次。Windows根据…...

【数据结构】---图

图 前言 本篇作为图的基础概念篇&#xff0c; 了解图的离散数学定义&#xff0c; 图的分类&#xff0c; 图模型解决的问题&#xff08;图的应用&#xff09;&#xff0c; 图的相关算法&#xff08;仅仅介绍&#xff0c;具体不在此篇展开&#xff09;。 学习基本路线&#xff…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...