深度强化学习中收敛图的横坐标是steps还是episode?
在深度强化学习(Deep Reinforcement Learning, DRL)的收敛图中,横坐标选择 steps 或者 episodes 主要取决于算法的设计和实验的需求,两者的差异和使用场景如下:
-
Steps(步数):
- 定义:一个 step 通常指的是在环境中执行一次动作并收到一次反馈(即状态转移和奖励)。因此,
steps代表的是智能体与环境交互的总次数。 - 使用场景:当我们关心算法每一步(action)如何影响学习效果,或想评估算法在更细粒度时间尺度下的学习过程时,常用
steps作为横坐标。对于一些环境来说,steps可以更好地反映学习的进展,尤其是当每个 episode 的长度不固定或差异较大时,steps会提供更一致的度量。 - 适用算法:比如在一些连续控制任务中,steps 更有意义,因为这些任务中的 episode 可能较长或很难明确划分。
- 定义:一个 step 通常指的是在环境中执行一次动作并收到一次反馈(即状态转移和奖励)。因此,
-
Episodes(回合):
- 定义:一个 episode 是智能体从环境的初始状态开始执行动作,直到到达终止状态(例如游戏结束、目标达成、或者智能体失败等)。一个 episode 包含了多个 steps。
- 使用场景:当我们关心智能体在整个任务中的表现变化时,
episodes作为横坐标更常见。通常,用于表示算法在完成完整任务(例如游戏、导航等)过程中逐渐收敛的情况,适合于那些有明确开始和结束的任务。 - 适用算法:例如在基于离散动作空间的任务(如游戏、迷宫导航等)中,episodes 更容易反映智能体在每次尝试完成任务时的表现。
选择依据:
- 任务的结构:如果任务有明确的回合(例如一个游戏关卡),那么使用
episodes更直观。如果任务没有明显的回合,或者回合长度变化较大,steps可能是更好的选择。 - 评估目标:如果你想观察智能体在每一个决策点的学习情况,用
steps可能更合适;如果你更关注智能体在整个任务(回合)中的学习进展,episodes会更合理。 - 算法特点:一些算法可能对每步的细粒度表现(如
steps)更加敏感,而另一些算法则关注整体表现(如episodes)。
简而言之,steps 适用于精细粒度的分析,episodes 适用于较高层次的任务表现分析。
相关文章:
深度强化学习中收敛图的横坐标是steps还是episode?
在深度强化学习(Deep Reinforcement Learning, DRL)的收敛图中,横坐标选择 steps 或者 episodes 主要取决于算法的设计和实验的需求,两者的差异和使用场景如下: Steps(步数): 定义&a…...
一个真实可用的登录界面!
需要工具: MySQL数据库、vscode上的php插件PHP Server等 项目结构: login | --backend | --database.sql |--login.php |--welcome.php |--index.html |--script.js |--style.css 项目开展 index.html: 首先需要一个静态网页&#x…...
Vue中watch监听属性的一些应用总结
【1】vue2中watch的应用 ① 简单监视 在 Vue 2 中,如果你不需要深度监视,即只需监听顶层属性的变化,可以使用简写形式来定义 watch。这种方式更加简洁,适用于大多数基本场景。 示例代码 假设你有一个 Vue 组件,其中…...
MongoDB-aggregate流式计算:带条件的关联查询使用案例分析
在数据库的查询中,是一定会遇到表关联查询的。当两张大表关联时,时常会遇到性能和资源问题。这篇文章就是用一个例子来分享MongoDB带条件的关联查询发挥的作用。 假设工作环境中有两张MongoDB集合:SC_DATA(学生基本信息集合&…...
Redis数据库与GO(一):安装,string,hash
安装包地址:https://github.com/tporadowski/redis/releases 建议下载zip版本,解压即可使用。解压后,依次打开目录下的redis-server.exe和redis-cli.exe,redis-cli.exe用于输入指令。 一、基本结构 如图,redis对外有个…...
expressjs,实现上传图片,返回图片链接
在 Express.js 中实现图片上传并返回图片链接,你通常需要使用一个中间件来处理文件上传,比如 multer。multer 是一个 node.js 的中间件,用于处理 multipart/form-data 类型的表单数据,主要用于上传文件。 以下是一个简单的示例&a…...
爬虫——XPath基本用法
第一章XML 一、xml简介 1.什么是XML? 1,XML指可扩展标记语言 2,XML是一种标记语言,类似于HTML 3,XML的设计宗旨是传输数据,而非显示数据 4,XML标签需要我们自己自定义 5,XML被…...
常见排序算法汇总
排序算法汇总 这篇文章说明下排序算法,直接开始。 1.冒泡排序 最简单直观的排序算法了,新手入门的第一个排序算法,也非常直观,最大的数字像泡泡一样一个个的“冒”到数组的最后面。 算法思想:反复遍历要排序的序列…...
Golang | Leetcode Golang题解之第459题重复的子字符串
题目: 题解: func repeatedSubstringPattern(s string) bool {return kmp(s s, s) }func kmp(query, pattern string) bool {n, m : len(query), len(pattern)fail : make([]int, m)for i : 0; i < m; i {fail[i] -1}for i : 1; i < m; i {j : …...
0.计网和操作系统
0.计网和操作系统 熟悉计算机网络和操作系统知识,包括 TCP/IP、UDP、HTTP、DNS 协议等。 常见的页面置换算法: 先进先出(FIFO)算法:将最早进入内存的页面替换出去。最近最少使用(LRU)算法&am…...
探索Prompt Engineering:开启大型语言模型潜力的钥匙
前言 什么是Prompt?Prompt Engineering? Prompt可以理解为向语言模型提出的问题或者指令,它是激发模型产生特定类型响应的“触发器”。 Prompt Engineering,即提示工程,是近年来随着大型语言模型(LLM,Larg…...
滚雪球学Oracle[3.3讲]:数据定义语言(DDL)
全文目录: 前言一、约束的高级使用1.1 主键(Primary Key)案例演示:定义主键 1.2 唯一性约束(Unique)案例演示:定义唯一性约束 1.3 外键(Foreign Key)案例演示:…...
ssrf学习(ctfhub靶场)
ssrf练习 目录 ssrf类型 漏洞形成原理(来自网络) 靶场题目 第一题(url探测网站下文件) 第二关(使用伪协议) 关于http和file协议的理解 file协议 http协议 第三关(端口扫描)…...
ElasticSearch之网络配置
对官方文档Networking的阅读笔记。 ES集群中的节点,支持处理两类通信平面 集群内节点之间的通信,官方文档称之为transport layer。集群外的通信,处理客户端下发的请求,比如数据的CRUD,检索等,官方文档称之…...
【C语言进阶】系统测试与调试
1. 引言 在开始本教程的深度学习之前,我们需要了解整个教程的目标及其结构,以及为何进阶学习是提升C语言技能的关键。 目标和结构: 教程目标:本教程旨在通过系统化的学习,从单元测试、系统集成测试到调试技巧…...
多个单链表的合成
建立两个非递减有序单链表,然后合并成一个非递增有序的单链表。 注意:建立非递减有序的单链表,需要采用创建单链表的算法 输入格式: 1 9 5 7 3 0 2 8 4 6 0 输出格式: 9 8 7 6 5 4 3 2 1 输入样例: 在这里给出一组输入。例如…...
『建议收藏』ChatGPT Canvas功能进阶使用指南!
大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...
Ollama 运行视觉语言模型LLaVA
Ollama的LLaVA(大型语言和视觉助手)模型集已更新至 1.6 版,支持: 更高的图像分辨率:支持高达 4 倍的像素,使模型能够掌握更多细节。改进的文本识别和推理能力:在附加文档、图表和图表数据集上进…...
gdb 调试 linux 应用程序的技巧介绍
使用 gdb 来调试 Linux 应用程序时,可以显著提高开发和调试的效率。gdb(GNU 调试器)是一款功能强大的调试工具,适用于调试各类 C、C 程序。它允许我们在运行程序时检查其状态,设置断点,跟踪变量值的变化&am…...
Java项目实战II基于Java+Spring Boot+MySQL的房产销售系统(源码+数据库+文档)
目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者 一、前言 随着房地产市场的蓬勃发展,房产销售业务日益复杂,传统的手工管理方式已难以满…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
