当前位置: 首页 > news >正文

QLoRA代码实战

QLoRA原理参考:
BiliBili:4bit量化与QLoRA模型训练
zhihu:QLoRA(Quantized LoRA)详解

下载llama3-8b模型

from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Meta-Llama-3-8B-Instruct')

设置quantization_config

from transformers import BitsAndBytesConfigquantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_use_double_quant=True,bnb_4bit_compute_dtype=torch.bfloat16,
)

加载模型

加载量化后的llama3-8b模型,大概需要6G的GPU显存。

from transformers import AutoModelForCausalLM,AutoTokenizer,TrainingArguments,Trainer,DataCollatorForSeq2Seq
model = AutoModelForCausalLM.from_pretrained(model_dir,quantization_config=quantization_config,low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained(model_dir)

一层的数据类型,可以看到除了layernorm,linear层都进行了量化。

model.layers.0.self_attn.q_proj.weight torch.uint8
model.layers.0.self_attn.k_proj.weight torch.uint8
model.layers.0.self_attn.v_proj.weight torch.uint8
model.layers.0.self_attn.o_proj.weight torch.uint8
model.layers.0.mlp.gate_proj.weight torch.uint8
model.layers.0.mlp.up_proj.weight torch.uint8
model.layers.0.mlp.down_proj.weight torch.uint8
model.layers.0.input_layernorm.weight torch.float16
model.layers.0.post_attention_layernorm.weight torch.float16

预处理模型

from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)

设置LoRA参数

这里使用了默认设置,参数target_modules和modules_to_save可以设置具体训练哪些模块。
在peft/utils/constants.py中,默认定义了各种模型的LoRA target modules,llama模型对Q和V进行lora。

"llama": ["q_proj", "v_proj"],
config = LoraConfig(task_type=TaskType.CAUSAL_LM)
model = get_peft_model(model, config)
model.print_trainable_parameters()
#trainable params: 3,407,872 || all params: 8,033,669,120 || trainable%: 0.0424
print(model) #加入了LoRA后的模型结构。

加载并处理数据

数据下载:AI-ModelScope/alpaca-gpt4-data-zh
需要把下载的数据中dataset_infos.json 重命名为datasets_info.json,这样才能正确加载。

from datasets import load_datasetdataset = load_dataset("alpaca-data-zh")def process_func(example):# print(example)MAX_LENGTH = 256input_ids, attention_mask, labels = [], [], []# 将prompt进行tokenize,这里我们没有利用tokenizer进行填充和截断# 这里我们自己进行截断,在DataLoader的collate_fn函数中进行填充input = example["input"] if example["input"] is not None else ''instruction = tokenizer("\n".join(["Human: " + example["instruction"], input]).strip() + "\n\nAssistant: ")# 将output进行tokenize,注意添加eos_tokenresponse = tokenizer(example["output"] + tokenizer.eos_token)# 将instruction + output组合为inputinput_ids = instruction["input_ids"] + response["input_ids"]attention_mask = instruction["attention_mask"] + response["attention_mask"]# prompt设置为-100,不计算losslabels = [-100] * len(instruction["input_ids"]) + response["input_ids"]# 设置最大长度,进行截断if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}tokenized_ds = dataset['train'].map(process_func, remove_columns=dataset['train'].column_names)

设置TrainingArguments

在per_device_train_batch_size=1的情况下,大概需要9G显存。

args = TrainingArguments(output_dir="./llama3_4bit",per_device_train_batch_size=4,gradient_accumulation_steps=32,logging_steps=10,num_train_epochs=1,save_strategy='epoch',learning_rate=1e-4,# gradient_checkpointing=True,# optim="paged_adamw_32bit")

训练

trainer = Trainer(model=model,args=args,tokenizer=tokenizer,train_dataset=tokenized_ds,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train(resume_from_checkpoint=False)

加载qlora

from transformers import AutoModelForCausalLM,AutoTokenizer
model_path = model_dir #llama3-8b的路径
model = AutoModelForCausalLM.from_pretrained(model_path,quantization_config=config,low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model_qlora = PeftModel.from_pretrained(model=model,model_id="llama3_4bit/checkpoint-7") #qlora路径
#预测
ipt = tokenizer("Human: {}\n{}".format("怎么学习llm", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
tokenizer.decode(model_qlora.generate(**ipt, max_length=128, do_sample=True)[0], skip_special_tokens=True)

合并LoRA

合并后的模型大概5.4G。

merge_model = model_qlora.merge_and_unload()
merge_model.save_pretrained("llama3")

相关文章:

QLoRA代码实战

QLoRA原理参考: BiliBili:4bit量化与QLoRA模型训练 zhihu:QLoRA(Quantized LoRA)详解 下载llama3-8b模型 from modelscope import snapshot_download model_dir snapshot_download(LLM-Research/Meta-Llama-3-8B-In…...

pyqt QGraphicsView 以鼠标为中心进行缩放

注意几个关键点: 1. 初始化 class CustomGraphicsView(QGraphicsView):def __init__(self, parentNone):super(CustomGraphicsView, self).__init__(parent)self.scene QGraphicsScene()self.setScene(self.scene)self.setGeometry(0, 0, 1024, 600)# 以下初始化…...

FPGA-Vivado-IP核-逻辑分析仪(ILA)

ILA IP核 背景介绍 在用FPGA做工程项目时,当Verilog代码写好,我们需要对代码里面的一些关键信号进行上板验证查看。首先,我们可以把需要查看的这些关键信号引出来,接好线通过示波器进行实时监测,但这会用到大量的线材…...

基于webComponents的纯原生前端框架

我本人的个人开发web前端前框架xui,正在开发中,业已完成50%的核心开发工作,并且在开发过程中逐渐完善. 目前框架未采用任何和市面上框架模式,没有打包过程,实现真实的开箱即用。 当然在开发过程中也会发现没有打包工…...

OpenCV-背景建模

文章目录 一、背景建模的目的二、背景建模的方法及原理三、背景建模实现四、总结 OpenCV中的背景建模是一种在计算机视觉中从视频序列中提取出静态背景的技术。以下是对OpenCV背景建模的详细解释: 一、背景建模的目的 背景建模的主要目标是将动态的前景对象与静态的…...

一个简单的摄像头应用程序6

主要改进点: 使用 ThreadPoolExecutor 管理多线程: 使用 concurrent.futures.ThreadPoolExecutor 来管理多线程,这样可以更高效地处理图像。 在 main 函数中创建一个 ThreadPoolExecutor,并在每个循环中提交图像处理任务。 减少…...

Pikachu-目录遍历

目录遍历,跟不安全文件上传下载有差不多; 访问 jarheads.php 、truman.php 都是通过 get 请求,往title 参数传参; 在后台,可以看到 jarheads.php 、truman.php所在目录: /var/www/html/vul/dir/soup 图片…...

用Python实现基于Flask的简单Web应用:从零开始构建个人博客

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 前言 在现代Web开发中,Python因其简洁、易用以及丰富的库生态系统,成为了许多开发者的首选编程语言。Flask作为一个轻量级的Python Web框架,以其简洁和灵活性深受开…...

IDEA的lombok插件不生效了?!!

记录一下,防止找不到解决方案,已经遇到好几次了 前面啰嗦的多,可以直接跳到末尾的解决方法,点击一下 问题现场情况 排查过程 确认引入的依赖正常 —》🆗 idea 是否安装了lombok插件 --》🆗 貌似没有问题…...

CSP-S 2022 T1假期计划

CSP-S 2022 T1假期计划 先思考暴力做法,题目需要找到四个不相同的景点,那我们就枚举这四个景点,判断它们之间的距离是否符合条件,条件是任意两个点之间的距离是否大于 k k k,所以我们需要求出任意两点之间的距离。常用…...

为什么要学习大模型?AI在把传统软件当早餐吃掉?

前言 上周末在推特平台上有一篇写在谷歌文档里的短文,在国外的科技/投资圈得到了非常广泛的浏览,叫做 The End of Software(软件的终结), 作者 Chris Paik 是位于纽约市的风险投资基金 Pace Capital 的创始合伙人&…...

全流程Python编程、机器学习与深度学习实践技术应用

近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其…...

pWnos1.0 靶机渗透 (Perl CGI 的反弹 shell 利用)

靶机介绍 来自 vulnhub 主机发现 ┌──(kali㉿kali)-[~/testPwnos1.0] …...

jquery on() 函数绑定无效

on 前面的元素必须在页面加载的时候就存在于 dom 里面。动态的元素或者样式等&#xff0c;可以放在 on 的第二个参数里面。jQuery on() 方法是官方推荐的绑定事件的一个方法。使用 on() 方法可以给将来动态创建的动态元素绑定指定的事件&#xff0c;例如 append 等。 <div …...

数字化转型与企业创新的双向驱动

数字化转型与企业创新的双向驱动 在全球化的竞争环境中&#xff0c;数字化转型已成为企业保持竞争力的重要手段。未来几年&#xff0c;随着信息技术的进一步发展&#xff0c;数字化转型将不仅限于IT部门&#xff0c;而是深入到企业的各个业务层面&#xff0c;推动创新和效率的…...

[uni-app]小兔鲜-07订单+支付

订单模块 基本信息渲染 import type { OrderState } from /services/constants import type { AddressItem } from ./address import type { PageParams } from /types/global/** 获取预付订单 返回信息 */ export type OrderPreResult {/** 商品集合 [ 商品信息 ] */goods: …...

Oracle数据库中表压缩的实现方式和特点

Oracle数据库中表压缩的实现方式和特点 在 Oracle 数据库中&#xff0c;表压缩是一项重要的功能&#xff0c;旨在优化存储空间和提高性能。Oracle 提供了多种表压缩技术&#xff0c;以适应不同的应用场景和需求。以下是 Oracle 数据库中表压缩的实现方式和特点&#xff1a; 1…...

【C语言】基础篇

简单输出“helloword” #include<stdio.h> int main(){printf("hello world!");return 0; } 和与商 #include<stdio.h> int main(){int a,b,sum,quotient;printf("Enter two numbers:");scanf("%d %d",&a,&b);sum a b…...

Meta MovieGen AI:颠覆性的文本生成视频技术详解

近年来&#xff0c;生成式AI技术的发展迅猛&#xff0c;尤其是在文本生成图像、文本生成视频等领域。Meta公司近期推出的MovieGen AI&#xff0c;以其强大的文本生成视频能力震撼了整个AI行业。本文将详细解读Meta MovieGen AI的核心技术、功能特性及其在实际应用中的潜力。 一…...

个人文章合集 - 前端相关

前端&#xff1a;简述表单提交前如何进行数据验证 前端&#xff1a;项目一个html中如何引入另一个html&#xff1f; 前端&#xff1a;一张图快速记忆CSS所有属性 前端&#xff1a;三个CSS预处理器(框架)-Sass、LESS 和 Stylus的比较 前端&#xff1a;基于Java角度理解nodejs/np…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...