滑动窗口--(中篇)
将X减到0的最小操作数

给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素,然后从 x 中减去该元素的值。请注意,需要 修改 数组以供接下来的操作使用。
如果可以将 x 恰好 减到 0 ,返回 最小操作数 ;否则,返回 -1 。
示例 1:
输入:nums = [1,1,4,2,3], x = 5
输出:2
解释:最佳解决方案是移除后两个元素,将 x 减到 0 。
示例 2:
输入:nums = [5,6,7,8,9], x = 4
输出:-1
示例 3:
输入:nums = [3,2,20,1,1,3], x = 10
输出:5
解释:最佳解决方案是移除后三个元素和前两个元素(总共 5 次操作),将 x 减到 0 。
提示:
1 <= nums.length <= 1051 <= nums[i] <= 104- `1 <= x <= 109


这里我们可能会觉得正着做去求,会有些困难,可以尝试着反着来做,效果会不一样
算法思路:
题⽬要求的是数组「左端+右端」两段连续的、和为 x 的最短数组,信息量稍微多⼀些,不易理清 思路;我们可以转化成求数组内⼀段连续的、和为 sum(nums) - x 的最⻓数组。此时,就是熟 悉的「滑动窗⼝」问题了。
算法流程:
a. 转化问题:求 target = sum(nums) - x 。如果 target < 0 ,问题⽆解;
b. 初始化左右指针 left = 0 , right = 0 (滑动窗⼝区间表⽰为 [left, right) ,左右区间是否开闭很重 要,必须设定与代码⼀致),记录当前滑动窗⼝内数组和的变量 tmp= 0 ,记录当前满⾜条 件数组的最⼤区间⻓度ret = -1 ;
c. 当 right ⼩于等于数组⻓度时,⼀直循环:
i. 如果 sum < target ,右移右指针,直⾄变量和⼤于等于 target ,或右指针已经移到 头;
ii. 如果 sum > target ,右移左指针,直⾄变量和⼩于等于 target ,或左指针已经移到 头;
iii. 如果经过前两步的左右移动使得 sum == target ,维护满⾜条件数组的最⼤⻓度,并 让下个元素进⼊窗⼝;
d. 循环结束后,如果 ret 的值有意义,则计算结果返回;否则,返回 -1 。
代码如下:
class Solution {
public:int minOperations(vector<int>& nums, int x) {int sum=0;for(int a:nums) sum+=a;int target=sum-x;if(target<0) return -1;int ret=-1;for(int left=0,right=0,tmp=0;right<nums.size();right++){tmp+=nums[right];while(tmp>target)tmp-=nums[left++];if(tmp==target)ret=max(ret,right-left+1);}if(ret==-1)return ret;else return nums.size()-ret;}
};
水果成篮
你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits 表示,其中 fruits[i] 是第 i 棵树上的水果 种类 。
你想要尽可能多地收集水果。然而,农场的主人设定了一些严格的规矩,你必须按照要求采摘水果:
- 你只有 两个 篮子,并且每个篮子只能装 单一类型 的水果。每个篮子能够装的水果总量没有限制。
- 你可以选择任意一棵树开始采摘,你必须从 每棵 树(包括开始采摘的树)上 恰好摘一个水果 。采摘的水果应当符合篮子中的水果类型。每采摘一次,你将会向右移动到下一棵树,并继续采摘。
- 一旦你走到某棵树前,但水果不符合篮子的水果类型,那么就必须停止采摘。
给你一个整数数组 fruits ,返回你可以收集的水果的 最大 数目。
示例 1:
输入:fruits = [1,2,1]
输出:3
解释:可以采摘全部 3 棵树。
示例 2:
输入:fruits = [0,1,2,2]
输出:3
解释:可以采摘 [1,2,2] 这三棵树。
如果从第一棵树开始采摘,则只能采摘 [0,1] 这两棵树。
示例 3:
输入:fruits = [1,2,3,2,2]
输出:4
解释:可以采摘 [2,3,2,2] 这四棵树。
如果从第一棵树开始采摘,则只能采摘 [1,2] 这两棵树。
示例 4:
输入:fruits = [3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:可以采摘 [1,2,1,1,2] 这五棵树。
提示:
1 <= fruits.length <= 1050 <= fruits[i] < fruits.length
题目解析
转化成找出一个最长的子数组的长度,子数组中不能超过两种水果的类型

算法思路:**
研究的对象是⼀段连续的区间,可以使⽤「滑动窗⼝」思想来解决问题。
让滑动窗⼝满⾜:窗⼝内⽔果的种类只有两种。
做法:右端⽔果进⼊窗⼝的时候,⽤哈希表统计这个⽔果的频次。这个⽔果进来后,判断哈希表的 ⼤⼩:
▪ 如果⼤⼩超过 2:说明窗⼝内⽔果种类超过了两种。那么就从左侧开始依次将⽔果划出窗 ⼝,直到哈希表的⼤⼩⼩于等于 2,然后更新结果;
▪ 如果没有超过 2,说明当前窗⼝内⽔果的种类不超过两种,直接更新结果 ret。
算法流程:
a. 初始化哈希表 hash 来统计窗⼝内⽔果的种类和数量;
b. 初始化变量:左右指针 left = 0,right = 0,记录结果的变量 ret = 0;
c. 当 right ⼩于数组⼤⼩的时候,⼀直执⾏下列循环:
i. 将当前⽔果放⼊哈希表中;
ii. 判断当前⽔果进来后,哈希表的⼤⼩:
• 如果超过 2:
◦ 将左侧元素滑出窗⼝,并且在哈希表中将该元素的频次减⼀;
◦ 如果这个元素的频次减⼀之后变成了 0,就把该元素从哈希表中删除;
◦ 重复上述两个过程,直到哈希表中的⼤⼩不超过 2;
iii. 更新结果 ret;
iv. right++,让下⼀个元素进⼊窗⼝;
d. 循环结束后,ret 存的就是最终结果。
C++ 算法代码(使⽤容器):
class Solution
{
public:int totalFruit(vector<int>& f) {unordered_map<int, int> hash; // 统计窗⼝内出现了多少种⽔果int ret = 0;for(int left = 0, right = 0; right < f.size(); right++){hash[f[right]]++; // 进窗⼝while(hash.size() > 2) // 判断{// 出窗⼝
hash[f[left]]--;if(hash[f[left]] == 0)hash.erase(f[left]);left++;}ret = max(ret, right - left + 1);}return ret;}
};
但是一直插入和删除的时间复杂度会提高,所以根据题目提示是有范围的,可以考虑用数组来模拟哈希表
代码如下(⽤数组模拟哈希表):
class Solution {
public:int totalFruit(vector<int>& fruits) {int hash[100001]={0};int ret=0;for(int left=0,right=0,kinds=0;right<fruits.size();right++){if(hash[fruits[right]]==0) kinds++;hash[fruits[right]]++;while(kinds>2){hash[fruits[left]]--;if(hash[fruits[left]]==0) kinds--;left++;}ret=max(ret,right-left+1);}return ret;}
};
相关文章:
滑动窗口--(中篇)
将X减到0的最小操作数 给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素,然后从 x 中减去该元素的值。请注意,需要 修改 数组以供接下来的操作使用。 如果可以将 x 恰好 减到 0 ,返…...
Java性能调优:实战技巧与最佳实践
引言 Java作为企业级应用开发的首选语言之一,其性能直接影响到系统的响应速度和用户体验。性能调优是一项复杂的工作,涉及多个层面的知识和技术。本文将通过具体的示例,探讨一些常见的性能调优技巧及最佳实践。 1. 了解你的应用程序 示例&…...
排版套料系统设计说明
先上效果图 项目地址 1.产品介绍 产品名称:StreamFit 智能排版套料系统 主要功能: 智能排版优化 功能描述:StreamFit 利用先进的算法技术,自动对各类材料(如布料、金属板材、纸张等)进行高效排版布局&am…...
算法修炼之路之二分查找
目录 一:三大二分介绍及模板 1.普通二分 2.查找左右边界的二分及模板 二:LeetCode OJ练习 1.第一题 2.第二题 3.第三题 4.第四题 5.第五题 6.第六题 一:三大二分介绍及模板 1.普通二分 这里通过一道题来引出普通二分及模板 LeetCode_704 二分查找 画图分析: 具体代…...
OpenAI预计明年将推出“代理”系统
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
每日OJ题_牛客_重排字符串_贪心_C++_Java
目录 牛客_重排字符串_贪心 题目解析 C代码 Java代码 牛客_重排字符串_贪心 重排字符串 (nowcoder.com) 描述: 小红拿到了一个只由小写字母组成的字符串。她准备把这个字符串重排(只改变字母的顺序,不改变数量) …...
Python 进阶部分详细整理
1. 面向对象编程(OOP) 面向对象编程 (OOP) 是一种通过将程序中的数据和功能封装为对象的编程范式。OOP 基于四个核心概念:类与对象、继承、封装与多态。 类与对象 类(Class):类是创建对象的蓝图或模板。它…...
[ RK3566-Android11 ] 关于移植 RK628F 驱动以及后HDMI-IN图像延迟/无声等问题
问题描述 由前一篇文章https://blog.csdn.net/jay547063443/article/details/142059700?fromshareblogdetail&sharetypeblogdetail&sharerId142059700&sharereferPC&sharesourcejay547063443&sharefromfrom_link,移植HDMI-IN部分驱动后出现&a…...
【黑马点评】 使用RabbitMQ实现消息队列——2.使用RabbitMQ监听秒杀下单
2 使用RabbitMQ实现消息队列 2.1 修改\hm-dianping\pom.xmlpom.xml文件 添加RabbitMQ的环境 <!-- RabbitMQ--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </depe…...
业务封装与映射 -- OTUk/ODUk/OPUk开销帧结构
开销是为了保证净荷正常、灵活传送所必须附加的供网络运行、管理和维护(OAM)使用的字节。 OTN电层开销包括OTUk开销、ODUk开销、OPUk开销、OTUCn开销、ODUCn开销、OPUCn开销和帧对齐开销。 SM开销属于OTU开销,占用3个字节;PM开销…...
Vim基本用法
Vim用法 一、基本模式 1. 普通模式(Normal Mode) 移动光标 基本移动:使用方向键(h左移、j下移、k上移、l右移),也可以使用 H(移到屏幕顶部)、M(移到屏幕中间ÿ…...
python 实现Tarjan 用于在有向图中查找强连通分量的算法
Tarjan 用于在有向图中查找强连通分量的算法介绍 Tarjan算法是一种用于在有向图中查找强连通分量的高效算法,由Robert Tarjan在1972年提出。强连通分量是指在有向图中,如果从顶点u到顶点v以及从顶点v到顶点u都存在一条路径,那么顶点u和顶点v…...
Qt开发技巧(十五)字符串去除空格,跨网段搜索不生效,设置图片显示失败问题,表格视图的批量删除,主动判断字串编码,开启向前查询的属性,画家类载入html来绘制
继续讲一些Qt开发中的技巧操作: 1.字符串去除空格 我们经常会遇到字符串重去除空格的情况,对于QString去除空格,有多种场景,可能需要去除左侧、右侧、所有等位置的空格; //字符串去空格 -1移除左侧空格 0移除所有空格…...
【机器学习】智驭未来:探索机器学习在食品生产中的革新之路
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀目录 🔍1. 引言:探索机器学习在食品生产中的革新之路📒2. 机器学习在食品质量控制中的应用🌞实…...
Ubuntu 安装CUDA并使用Docker配置Pytorch环境
文章目录 参考安装顺序Nvidia GPU driverDockerNvidia Container ToolkitDocker PyTorch 1. Nvidia GPU Driver2. Docker 安装(使用apt存储库进行安装)3. Nvidia Container Toolkit3.1 Docker测试GPU 参考 安装顺序 Nvidia GPU driver Docker Nvidia…...
【论文阅读】Simulating 500 million years of evolution with a language model
Simulating 500 million years of evolution with a language model 1、概述 展示了语言模型在蛋白质设计和进化模拟方面的能力。通过对 ESM3 模型的研究,发现其能够生成与自然蛋白质差异较大且具有功能的新蛋白质,如新型绿色荧光蛋白(GFP),表明语言模型可以达到自然进化…...
detectron2/layers源码笔记
from .wrappers import ( BatchNorm2d, Conv2d, #在torch.conv2d的基础上集成了norm层和activation层 ConvTranspose2d, cat, interpolate, Linear, nonzero_tuple, #nonzero_tuple(x)得到tuple of 每个维度的索引 cross_entropy, empty_input_loss_func…...
LLM+知识图谱新工具! iText2KG:使用大型语言模型构建增量知识图谱
iText2KG是一个基于大型语言模型的增量知识图谱构建工具,通过从文本文档中提取实体和关系来逐步构建知识图谱。该工具具有零样本学习能力,能够在无需特定训练的情况下,在多个领域中进行知识提取。它包括文档提炼、实体提取和关系提取模块&…...
React基础-快速梳理
React介绍 React由Meta公司开发,是一个用于构建Web和原生交互界面的库 React的优势 相较于传统基于DOM开发的优势 组件化的开发方式不错的性能 相较于其它前端框架的优势 丰富的生态跨平台支持 开发环境创建 create-react-app是一个快速创建React开发环境的…...
H.264编解码 - NALU详解
一、概述 NALU(Network Abstraction Layer Unit)是H.264编解码中的一个重要概念。H.264是一种视频压缩标准,将视频数据分割成一系列的NALU。每个NALU都是一个独立的数据单元,包含视频压缩后的一个片段。每个NALU都有自己的起始码和长度前缀,用于标识NALU的起始位置和长度。…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
