当前位置: 首页 > news >正文

算法-汉诺塔问题(Hanoi tower)

介绍

汉诺塔是源于印度的一个古老传说的小游戏,简单来说就是有三根柱子,开始的时候,第一根柱子上圆盘由大到小,自下往上排列。这个小游戏要实现的目的呢,就是要把第一根柱子上的圆盘移到第三根的柱子上去;条件呢,就是在移动过程当中不能将大的圆盘放在小的圆盘上面,我们可以利用中间第二根柱子作为桥梁来承接我们要移动的圆盘。

而在这个传说当中,一共有64块圆盘,假设我们使用递归的方法,我们也得用18446744073709551615的步数来实现我们的目的,换算成时间呢,我们得花5845.42亿年来实现这个过程。

算法思路

实现这个小游戏的算法思路是什么呢?

我们一定要将最大的那块圆盘放到C柱那里去,那么我们的目的就很明确,我们倒着思考一下,最后那几步的时候,我们是要将上面的n-1块圆盘移动到中间的柱子上,最后再将n-1块圆盘放到C柱上的。

假设我们这里有三块圆盘,我们先将A盘上的两块小圆盘移到B盘上去

再将A柱上最大的圆盘移动到C柱上

再将B柱上的圆盘放回C住上,最后大功告成

那在这一步的前一步呢,那不就是n-2块了吗,对于前面的步骤,都是和最后的类似,那最后一步我们走了几步呢?假设我们有一个表达式能描述移动的步数,那么f(n)=2*f(n-1)+1,f(1)=1,f(0)=0

为什么会有这个表达式呢,我们先移动了n-1块盘到B柱,再将n-1块盘到C柱,这里我们就可以得到2*f(n-1),我们还将最下面的那个盘子放到了C盘这里,所以我们在这里得加一。

最后我们可以得到步数的结果为f(n)=2^n-1

其它方法

美国学者曾提出过一种更为简洁的方法:首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:

  • 若n为偶数,按顺时针方向依次摆放 A B C
  • 若n为奇数,按顺时针方向依次摆放 A C B

步骤

  1. 按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。 

  2. 接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。

  3. 反复进行⑴⑵操作,最后就能按规定完成汉诺塔的移动。

 代码实现

python

def f(n):if n==0:return 0else:return 2*f(n-1)+1
x=int(input("请输入片的个数:"))
print("需要移动",f(x),"次")
def hanoi(n, a, b, c):if n == 1:print(a, '-->', c)else:hanoi(n - 1, a, c, b)print(a, '-->', c)hanoi(n - 1, b, a, c)
# 调用
hanoi(5, 'A', 'B', 'C')

cpp

#include <iostream> using namespace std; void hanoi(int n, char source, char help, char target){static int step = 0; if (n == 1)std::cout << (++step) << ": " << source << "---->" << target << endl; else{// move n-1 disks from source to help hanoi(n-1, source, target, help); std::cout <<(++step) << ": " << source << "---->" << target << endl; hanoi(n-1, help, source, target);}
}
int main(void){hanoi(10, 'a', 'b', 'c');return 0; 
}

C

#include <stdio.h>
#include <windows.h>
void Hanoi(int n, char a,char b,char c);
void Move(int n, char a, char b);
int count;
int main()
{int n=8;printf("汉诺塔的层数:\n");scanf(" %d",&n);Hanoi(n, 'A', 'B', 'C');Sleep(20000);return 0;
}
void Hanoi(int n, char a, char b, char c)
{if (n == 1){Move(n, a, c);}else{Hanoi(n - 1, a, c, b);Move(n, a, c);Hanoi(n - 1, b, a, c);}
}
void Move(int n, char a, char b)
{count++;printf("第%d次移动 Move %d: Move from %c to %c !\n",count,n,a,b);
}

相关文章:

算法-汉诺塔问题(Hanoi tower)

介绍 汉诺塔是源于印度的一个古老传说的小游戏&#xff0c;简单来说就是有三根柱子&#xff0c;开始的时候&#xff0c;第一根柱子上圆盘由大到小&#xff0c;自下往上排列。这个小游戏要实现的目的呢&#xff0c;就是要把第一根柱子上的圆盘移到第三根的柱子上去&#xff1b;…...

HarmonyOS鸿蒙 Next 实现协调布局效果

HarmonyOS鸿蒙 Next 实现协调布局效果 ​ 假期愉快! 最近大A 的涨势实在是红的让人晕头转向&#xff0c;不知道各位收益如何&#xff0c;这会是在路上&#xff0c;还是已经到目的地了? 言归正传&#xff0c;最近有些忙&#xff0c;关于鸿蒙的实践系列有些脱节了&#xff0c;…...

【自然语言处理】(1) --语言转换方法

文章目录 语言转换方法一、统计语言模型1. 词向量转换2. 统计模型问题 二、神经语言模型1. 词向量化2. 维度灾难3. 解决维度灾难4. embedding词嵌入5. Word2Vec技术5.1 连续词袋模型&#xff08;CBOW&#xff09;5.2 跳字模型&#xff08;Skip-gram&#xff09; 总结 语言转换方…...

叉车防撞系统方案,引领安全作业新时代

在现代工业的舞台上&#xff0c;叉车如同忙碌的“搬运工”&#xff0c;在仓储和制造环境中发挥着不可或缺的作用。然而&#xff0c;随着叉车使用频率的不断攀升&#xff0c;安全事故也如影随形&#xff0c;给企业带来经济损失的同时&#xff0c;更严重威胁着操作人员的生命安全…...

Nginx的核心架构和设计原理

Nginx 是一个免费的、开源的、高性能 Http 服务器和反向代理。Nginx 的架构设计是为了提供高性能、稳定性和可扩展性。 Nginx 的主要架构组件和工作原理&#xff1a; 1、Master 进程&#xff1a;Nginx 的运行始于一个 master 进程&#xff0c;它负责管理所有的工作进程。mast…...

leetcode35--搜索插入位置--二分查找刷题

搜索插入位置 一共会出现下面四种情况&#xff1a; 目标值在数组所有元素之前 目标值等于数组中某一个元素 目标值插入数组中的位置 目标值在数组所有元素之后 首先在二分查找的代码之前处理掉目标值在数组所有元素之前和之后的情况如果目标值在数组中的某个位置&#xff0c…...

Django对接支付宝沙箱环境(2024年9月新测有效)

1、申请沙箱环境 #需要填一些个人信息 https://opendocs.alipay.com/ 2、使用支付宝登入&#xff0c;并进入控制台&#xff0c;进入开发者工具推荐-->沙箱 3、获取基本信息 主要是APPID,和支付宝网关地址 4、生成应用私钥和应用公钥和支付宝公钥 上面的接口加签方式选择…...

【MySQL】-- 库的操作

文章目录 1. 查看数据库1.1 语法 2. 创建数据库2.1 语法2.2 示例2.2.1 创建一个名为java114的数据库2.2.2 创建数据库java114&#xff0c;如果数据库不存在则创建2.2.3 查看警告信息 3. 字符集编码和校验&#xff08;排序&#xff09;规则3.1 查看数据库支持的字符集编码3.2 查…...

linux桌面软件(wps)内嵌到主窗口后的关闭问题

程序测试环境是&#xff1a;slackware系统&#xff0c;属于linux系统&#xff0c;有桌面&#xff08;Xface Session&#xff09;。系统镜像是&#xff1a;slackware64-15.0-install-dvd.iso。qt、c代码实现。 问题描述&#xff1a;延续上一篇文章&#xff0c;将wps软件窗口内嵌…...

WindowsTerminal 美化-壁纸随机更换

目录 一. 相关网址二. 壁纸随机更换思路三. 指定 WindowsTermina 壁纸路径四. 编写脚本&#xff0c;随机替换壁纸4.1 powershell脚本4.2 .bat批处理脚本 四. 配置定时任务&#xff0c;添加触发器五. 效果 一. 相关网址 官方下载 Windows Terminal 官方Github微软商店 美化 Oh …...

iOS 多次获取图片主题色不一样

一个需求中&#xff0c;要求获取图片的主题色 代码如下 -(void)kk_getImage:(UIImage *)image fetchthemeColor:(void(^)(UIColor *color))callBack {dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{// 第一步 先把图片缩小 加快计算速度.…...

UE5 武器IK瞄准系统

创建空项目 创建基础蓝图类My_GameMode,My_HUD,My_PlayChar,My_PlayController 项目设置地图模式 近裁平面 0.1 My_PlayChar蓝图中添加摄像机,角色骨骼网格体,武器骨骼网格体 编辑角色骨骼,预览控制器使用特定动画,动画选择ANM_ark-47-Idle hand_r 添加插槽WeaponMes…...

①EtherCAT转ModbusTCP, EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关

EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关https://item.taobao.com/item.htm?ftt&id822721028899 协议转换通信网关 EtherCAT 转 ModbusTCP GW系列型号 MS-GW15 简介 MS-GW15 是 EtherCAT 和 Modbus TCP 协议转换网关&#xff0c;为用户提供一种 …...

在macOS上进行开发环境配置与应用开发详细的配置指南

在macOS上进行开发环境配置与应用开发&#xff0c;需要遵循一系列步骤来确保你的开发环境既高效又稳定。以下是一个详细的配置指南&#xff0c;涵盖了从安装基本工具到创建应用的整个过程。 1. 安装和更新macOS 首先&#xff0c;确保你的macOS是最新版本。更新系统可以提供更…...

JavaScript 事件处理基础

在网页中添加事件监听器&#xff0c;可以通过JavaScript代码来实现。 要处理用户的交互事件&#xff0c;需要先选择要添加事件监听器的元素&#xff0c;可以使用document.querySelector()或document.getElementById()等方法来获取元素。 然后&#xff0c;使用addEventListene…...

WordPress响应式Git主题响应式CMS主题模板

兼容 IE9、谷歌 Chrome 、火狐 Firefox 等主流浏览器 扁平化的设计加响应式布局&#xff0c;兼容电脑、和各个尺寸手机的完美响应 主题设置面板新增多种AD位&#xff0c;PC端和移动设备各不相同 在主题设置选项中就可以进行基本的SEO设置&#xff1a;首页、分类、文章等页面…...

Solidity 设计模式:实现灵活与可扩展的智能合约架构

Solidity 作为以太坊智能合约的主要编程语言&#xff0c;拥有许多独特的设计模式&#xff0c;这些模式帮助开发者实现更加灵活、可扩展和安全的合约架构。设计模式不仅能够简化开发过程&#xff0c;还能减少常见的编程错误&#xff0c;并提高智能合约的可维护性和可升级性。本文…...

房屋水电费:重新布局,重构JS代码

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>房租水电费</title><script type"…...

Jmeter生成JWT token

JWT简介 JWT官网&#xff1a;https://jwt.io/ JSON Web令牌&#xff08;JWT&#xff09;是一个开放标准&#xff08;RFC 7519&#xff09;&#xff0c;它定义了一种紧凑而自包含的方式&#xff0c;用于在各方之间以JSON对象的形式安全地传输信息。此信息可以验证和信任&#x…...

STM32的ADC技术详解

ADC&#xff08;Analog-to-Digital Converter&#xff0c;模数转换器&#xff09; 是将连续的模拟信号转换为离散的数字信号的关键组件。在STM32系列微控制器中&#xff0c;ADC广泛应用于传感器数据采集、信号处理和控制系统等领域。本文将详细介绍STM32的ADC技术&#xff0c;包…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...