当前位置: 首页 > news >正文

18448 最小生成树

### 思路
使用Kruskal算法求解图的最小生成树。Kruskal算法通过对所有边按权值排序,然后逐步选择最小权值的边,确保不会形成环,直到构建出最小生成树。

### 伪代码
1. 读取输入的结点数`n`和边数`m`。
2. 读取每条边的信息,存储在边列表中。
3. 对边列表按权值进行排序。
4. 初始化并查集。
5. 遍历排序后的边列表,逐步选择边并加入最小生成树,确保不会形成环。
6. 输出最小生成树的边权和。

### C++代码

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;struct Edge {int u, v;long long w;bool operator<(const Edge& other) const {return w < other.w;}
};vector<int> parent, rankVec;int find(int u) {if (parent[u] != u) {parent[u] = find(parent[u]);}return parent[u];
}void unionSets(int u, int v) {int rootU = find(u);int rootV = find(v);if (rootU != rootV) {if (rankVec[rootU] > rankVec[rootV]) {parent[rootV] = rootU;} else if (rankVec[rootU] < rankVec[rootV]) {parent[rootU] = rootV;} else {parent[rootV] = rootU;rankVec[rootU]++;}}
}int main() {int n, m;cin >> n >> m;vector<Edge> edges(m);for (int i = 0; i < m; ++i) {cin >> edges[i].u >> edges[i].v >> edges[i].w;}sort(edges.begin(), edges.end());parent.resize(n + 1);rankVec.resize(n + 1, 0);for (int i = 1; i <= n; ++i) {parent[i] = i;}long long mstWeight = 0;for (const auto& edge : edges) {if (find(edge.u) != find(edge.v)) {unionSets(edge.u, edge.v);mstWeight += edge.w;}}cout << mstWeight << endl;return 0;
}

### 总结
该代码使用Kruskal算法求解图的最小生成树。通过对边按权值排序,使用并查集管理连通性,逐步选择最小权值的边,确保不会形成环,最终输出最小生成树的边权和。

相关文章:

18448 最小生成树

### 思路 使用Kruskal算法求解图的最小生成树。Kruskal算法通过对所有边按权值排序&#xff0c;然后逐步选择最小权值的边&#xff0c;确保不会形成环&#xff0c;直到构建出最小生成树。 ### 伪代码 1. 读取输入的结点数n和边数m。 2. 读取每条边的信息&#xff0c;存储在边列…...

前端工程化 - Vue

环境准备 Vue-cli是Vue官方提供的一个脚手架&#xff0c;用户快速生成一个Vue的项目模板。 Vue-cli提供了如下功能&#xff1a; 统一的目录结构本地调试热部署单元测试集成打包上线 需要安装Node.js 安装Vue-cli npm install -g vue/cli通过vue --version指令查看是否安装成…...

使用 NVIDIA H100 上的 Azure 机密计算释放隐私保护 AI 的潜力

通过 NVIDIA H100 上的 Azure 机密计算释放隐私保护 AI 的潜力 文章目录 前言一、机密计算二、使用 NVIDIA H100 Tensor Core GPU 的 Azure 机密计算1. 安全功能2. 可扩展性和可编程性三、场景1. 模型机密性2. 推理/提示机密性3. 使用私有数据进行微调4. 多方培训结论前言 这是…...

目标检测与图像分类:有什么区别?各自的使用场景是什么?

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

Lua 数据类型

Lua 数据类型 Lua 是一种轻量级的编程语言&#xff0c;因其简单性和灵活性而广受欢迎。在 Lua 中&#xff0c;数据类型是编程的基础&#xff0c;它们决定了变量能够存储哪种类型的数据。Lua 的数据类型可以分为以下几个类别&#xff1a; 1. nil nil 是 Lua 中的一个特殊类型…...

复现文章:R语言复现文章画图

文章目录 介绍数据和代码图1图2图6附图2附图3附图4附图5附图6 介绍 文章提供画图代码和数据&#xff0c;本文记录 数据和代码 数据可从以下链接下载&#xff08;画图所需要的所有数据&#xff09;&#xff1a; 百度云盘链接: https://pan.baidu.com/s/1peU1f8_TG2kUKXftkpYq…...

东方仙盟——软件终端架构思维———未来之窗行业应用跨平台架构

一、创生.前世今生 在当今的数字化时代&#xff0c;我们的服务覆盖全球&#xff0c;拥有数亿客户。然而&#xff0c;这庞大的用户规模也带来了巨大的挑战。安全问题至关重要&#xff0c;任何一处的漏洞都可能引发严重的数据泄露危机。网络带宽时刻面临考验&#xff0c;稍有不足…...

支持向量机(SVM)基础教程

一、引言 支持向量机&#xff08;Support Vector Machine&#xff0c;简称SVM&#xff09;是一种高效的监督学习算法&#xff0c;广泛应用 于分类和回归分析。SVM以其强大的泛化能力、简洁的数学形式和优秀的分类效果而备受机器学 习领域的青睐。 二、SVM基本原理 2.1 最大间…...

Python小示例——质地不均匀的硬币概率统计

在概率论和统计学中&#xff0c;随机事件的行为可以通过大量实验来研究。在日常生活中&#xff0c;我们经常用硬币进行抽样&#xff0c;比如抛硬币来决定某个结果。然而&#xff0c;当我们处理的是“质地不均匀”的硬币时&#xff0c;事情就变得复杂了。质地不均匀的硬币意味着…...

京东web 京东e卡绑定 第二部分分析

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 有相关问题请第一时间头像私信联系我删…...

【数据结构与算法】Greedy Algorithm

1) 贪心例子 称之为贪心算法或贪婪算法&#xff0c;核心思想是 将寻找最优解的问题分为若干个步骤每一步骤都采用贪心原则&#xff0c;选取当前最优解因为没有考虑所有可能&#xff0c;局部最优的堆叠不一定让最终解最优 贪心算法是一种在每一步选择中都采取在当前状态下最好…...

Ubuntu22.04之mpv播放器高频快捷键(二百七十)

简介&#xff1a; CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布&#xff1a;《Android系统多媒体进阶实战》&#x1f680; 优质专栏&#xff1a; Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a; 多媒体系统工程师系列【…...

新闻推荐系统:Spring Boot的可扩展性

6系统测试 6.1概念和意义 测试的定义&#xff1a;程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为&#xff1a; 目的&#xff1a;发现程序的错误&#xff1b; 任务&#xff1a;通过在计算机上执行程序&#xff0c;暴露程序中潜在的错误。 另一个…...

目录工具类 - C#小函数类推荐

此文记录的是目录工具类。 /***目录工具类Austin Liu 刘恒辉Project Manager and Software DesignerE-Mail: lzhdim163.comBlog: http://lzhdim.cnblogs.comDate: 2024-01-15 15:18:00***/namespace Lzhdim.LPF.Utility {using System.IO;/// <summary>/// The Objec…...

速盾:如何判断高防服务器的防御是否真实?

随着网络攻击日益增多和攻击手段的不断升级&#xff0c;保护网络安全变得越来越重要。高防服务器作为一种提供网络安全保护的解决方案&#xff0c;受到了越来越多的关注。然而&#xff0c;对于用户来说&#xff0c;如何判断高防服务器的防御是否真实&#xff0c;是否能够真正保…...

MySQL连接查询:联合查询

先看我的表结构 emp表 联合查询的关键字&#xff08;union all, union&#xff09; 联合查询 基本语法 select 字段列表 表A union all select 字段列表 表B 例子&#xff1a;将薪资低于5000的员工&#xff0c; 和 年龄大于50 岁的员工全部查询出来 第一种 select * fr…...

Gitea 数据迁移

一、从 Windows 迁移 Gitea 1. 备份 Gitea 数据 1.1 备份仓库文件 在 Windows 中&#xff0c;Gitea 仓库文件通常位于 C:\gitea\data\repositories。你可以使用压缩工具将该目录打包&#xff1a; 1.&#xff09;右键点击 C:\gitea\data\repositories 目录&#xff0c;选择 “…...

MySQL 绪论

数据库相关概念 数据库&#xff08;DB&#xff09;&#xff1a;存储数据的仓库数据库管理系统&#xff08;DBMS&#xff09;&#xff1a;操纵和管理数据库的大型软件SQL&#xff1a;操纵关系型数据库的编程语言&#xff0c;定义了一套操作关系型数据库的统一标准主流的关系型数…...

什么是 HTTP Get + Preflight 请求

当在 Chrome 开发者工具的 Network 面板中看到 GET Preflight 的 HTTP 请求方法时&#xff0c;意味着该请求涉及跨域资源共享 (CORS)&#xff0c;并且该请求被预检了。理解这种请求的背景&#xff0c;主要在于 CORS 的工作机制和现代浏览器对安全性的管理。 下面是在 Chrome …...

(JAVA)开始熟悉 “二叉树” 的数据结构

1. 二叉树入门 ​ 符号表的增删查改操作&#xff0c;随着元素个数N的增多&#xff0c;其耗时也是线性增多的。时间复杂度都是O(n)&#xff0c;为了提高运算效率&#xff0c;下面将学习 树 这种数据结构 1.1 树的基本定义 ​ 树是我们计算机中非常重要的一种数据结构&#xf…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...