当前位置: 首页 > news >正文

【数学分析笔记】第4章第4节 复合函数求导法则及其应用(2)

4. 微分

4.4 复合函数求导法则及其应用

【例4.4.3】 y = e 1 + cos ⁡ x y=e^{\sqrt{1+\cos x}} y=e1+cosx ,求 y ′ y' y
【解】 y ′ = e 1 + cos ⁡ x ⋅ 1 2 1 + cos ⁡ x ⋅ ( − sin ⁡ x ) = − sin ⁡ x 2 1 + cos ⁡ x e 1 + cos ⁡ x y'=e^{\sqrt{1+\cos x}}\cdot\frac{1}{2\sqrt{1+\cos x}}\cdot(-\sin x)=-\frac{\sin x}{2\sqrt{1+\cos x}}e^{\sqrt{1+\cos x}} y=e1+cosx 21+cosx 1(sinx)=21+cosx sinxe1+cosx

4.4.2 幂指函数求导法则

y = f ( x ) = u ( x ) v ( x ) y=f(x)=u(x)^{v(x)} y=f(x)=u(x)v(x)
两边取对数得 ln ⁡ y = ln ⁡ f ( x ) = v ( x ) ln ⁡ u ( x ) \ln y=\ln f(x)=v(x)\ln u(x) lny=lnf(x)=v(x)lnu(x)
等式两边同时对 x x x求导得 1 y y ′ = 1 u ( x ) v ( x ) y ′ = v ′ ( x ) ln ⁡ u ( x ) + v ( x ) u ( x ) u ′ ( x ) \frac{1}{y}y'=\frac{1}{u(x)^{v(x)}}y'=v'(x)\ln u(x)+\frac{v(x)}{u(x)}u'(x) y1y=u(x)v(x)1y=v(x)lnu(x)+u(x)v(x)u(x)
y ′ ( x ) = u ( x ) v ( x ) ( v ′ ( x ) ln ⁡ u ( x ) + v ( x ) u ′ ( x ) u ( x ) ) y'(x)=u(x)^{v(x)}(v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)}) y(x)=u(x)v(x)(v(x)lnu(x)+u(x)v(x)u(x))
【例】 y = ( sin ⁡ x ) cos ⁡ x y=(\sin x)^{\cos x} y=(sinx)cosx,求 y ′ y' y
【解】 ln ⁡ y = cos ⁡ x ln ⁡ ( sin ⁡ x ) \ln y=\cos x\ln(\sin x) lny=cosxln(sinx)
y ′ y = − sin ⁡ x ln ⁡ ( sin ⁡ x ) + cos ⁡ x 1 sin ⁡ x ⋅ cos ⁡ x \frac{y'}{y}=-\sin x\ln(\sin x)+\cos x\frac{1}{\sin x}\cdot \cos x yy=sinxln(sinx)+cosxsinx1cosx
y ′ = ( sin ⁡ x ) cos ⁡ x ( cos ⁡ 2 x sin ⁡ x − sin ⁡ x ln ⁡ ( sin ⁡ x ) ) y'=(\sin x)^{\cos x}(\frac{\cos ^2 x}{\sin x}-\sin x\ln(\sin x)) y=(sinx)cosx(sinxcos2xsinxln(sinx))

4.4.3 导数运算法则和微分运算法则


表要记住

4.4.4 一阶微分形式不变性

只有一阶微分有形式不变性

  • y = f ( u ) , y ′ ( u ) = f ′ ( u ) , d y = f ′ ( u ) d u , u y=f(u),y'(u)=f'(u),dy=f'(u)du,u y=f(u),y(u)=f(u),dy=f(u)du,u是自变量;
  • y = f ( u ) , u = g ( x ) , y = f ( g ( x ) ) , y ′ ( x ) = f ′ ( u ) g ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) , d y = f ′ ( g ( x ) ) g ′ ( x ) d x = f ′ ( g ( x ) ) d g ( x ) = f ′ ( u ) d u , u y=f(u),u=g(x),y=f(g(x)),y'(x)=f'(u)g'(x)=f'(g(x))g'(x),dy = f'(g(x))g'(x)dx=f'(g(x))dg(x)=f'(u)du,u y=f(u),u=g(x),y=f(g(x)),y(x)=f(u)g(x)=f(g(x))g(x),dy=f(g(x))g(x)dx=f(g(x))dg(x)=f(u)du,u是中间变量;

不管 u u u是自变量还是中间变量,都有一个式子成立即 d y = f ′ ( u ) d u dy=f'(u)du dy=f(u)du,这就叫做一阶微分的形式不变性

4.4.5 隐函数得求导与求微分

隐函数的表达式: F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
【例】 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1,限定 y > 0 y>0 y>0就是上半椭圆, y < 0 y<0 y<0就是下半椭圆,求微分。
d ( x 2 a 2 + y 2 b 2 ) = 0 d(\frac{x^2}{a^2}+\frac{y^2}{b^2})=0 d(a2x2+b2y2)=0
1 a 2 2 x d x + 1 b 2 2 y d y = 0 \frac{1}{a^2}2xdx+\frac{1}{b^2}2ydy=0 a212xdx+b212ydy=0
亦即 d y = − b 2 a 2 ⋅ x y d x dy=-\frac{b^2}{a^2}\cdot\frac{x}{y}dx dy=a2b2yxdx
所以 d y d x = − b 2 a 2 ⋅ x y \frac{dy}{dx}=-\frac{b^2}{a^2}\cdot\frac{x}{y} dxdy=a2b2yx
【例4.4.5】 e x y + x 2 y − 1 = 0 e^{xy}+x^2y-1=0 exy+x2y1=0,求 y ′ . y'. y.
【解】它的显函数写不出来,用隐函数求导法则
左右两边对 x x x求导
d d x ( e x y + x 2 y − 1 ) = 0 \frac{d}{dx}(e^{xy}+x^2y-1)=0 dxd(exy+x2y1)=0
e x y ( y + x y ′ ) + 2 x y + x 2 y ′ = 0 e^{xy}(y+xy')+2xy+x^2y'=0 exy(y+xy)+2xy+x2y=0
y ′ ( x ) = − 2 x y + y e x y x e x y + x 2 = − ( e x y + 2 x ) y ( e x y + x ) x y'(x)=-\frac{2xy+ye^{xy}}{xe^{xy}+x^2}=-\frac{\left(\mathrm{e}^{x y}+2 x\right) y}{\left(\mathrm{e}^{x y}+x\right) x} y(x)=xexy+x22xy+yexy=(exy+x)x(exy+2x)y


【例4.4.6】 sin ⁡ y 2 = cos ⁡ x \sin y^2=\cos \sqrt{x} siny2=cosx ,求 y ′ y' y
【解】等式两边同时求微分得
2 y cos ⁡ y 2 d y = − sin ⁡ x ⋅ 1 2 x d x 2y\cos y^2 dy=-\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}dx 2ycosy2dy=sinx 2x 1dx
由一阶微分的形式不变性
y ′ = d y d x = − sin ⁡ x 4 y ( cos ⁡ y 2 ) x y' =\frac{dy}{dx}=-\frac{\sin\sqrt{x}}{4y(\cos y^2) \sqrt{x}} y=dxdy=4y(cosy2)x sinx


【例4.4.7】 e x + y − x y − e = 0 e^{x+y}-xy-e=0 ex+yxye=0几何上表示平面上一条曲线, ( 0 , 1 ) (0,1) (0,1)在曲线上,求过 ( 0 , 1 ) (0,1) (0,1)的切线方程。
【解】等式两边求导得 e x + y ( 1 + y ′ ) − y − x y ′ = 0 e^{x+y}(1+y')-y-xy'=0 ex+y(1+y)yxy=0
y ′ ( x ) = y − e x + y e x + y − x y'(x)=\frac{y-e^{x+y}}{e^{x+y}-x} y(x)=ex+yxyex+y
( 0 , 1 ) (0,1) (0,1)代入 y ′ ( x ) y'(x) y(x),则 y ′ ( 0 ) = 1 − e 1 e 1 − 0 = 1 − e e y'(0)=\frac{1-e^{1}}{e^{1}-0}=\frac{1-e}{e} y(0)=e101e1=e1e
则切线方程为 y − 1 = 1 − e e x y-1=\frac{1-e}{e}x y1=e1ex

4.4.6 归纳

(1) y = 1 g ( x ) , y ′ = − g ′ ( x ) g 2 ( x ) y=\frac{1}{g(x)},y'=-\frac{g'(x)}{g^2(x)} y=g(x)1,y=g2(x)g(x),也可以看成 y = 1 u , u = g ( x ) , y ′ = − 1 u 2 g ′ ( x ) = − g ′ ( x ) g 2 ( x ) y=\frac{1}{u},u=g(x),y'=-\frac{1}{u^2}g'(x)=-\frac{g'(x)}{g^2(x)} y=u1,u=g(x),y=u21g(x)=g2(x)g(x)
(2) y = f ( x ) , x = f − 1 ( y ) , f − 1 ( f ( x ) ) = x y=f(x),x=f^{-1}(y),f^{-1}(f(x))=x y=f(x),x=f1(y),f1(f(x))=x
等式 f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f1(f(x))=x两边对 x x x求导得 1 = ( f − 1 ( y ) ) ′ f ′ ( x ) 1=(f^{-1}(y))'f'(x) 1=(f1(y))f(x),所以 f − 1 ( y ) ) ′ = 1 f ′ ( x ) f^{-1}(y))'=\frac{1}{f'(x)} f1(y))=f(x)1

4.4.7 函数的参数表示(参数方程)求导

{ x = φ ( t ) , y = ψ ( t ) , α ⩽ t ⩽ β \left\{\begin{array}{l} x=\varphi(t), \\ y=\psi(t), \end{array} \quad \alpha \leqslant t \leqslant \beta\right. {x=φ(t),y=ψ(t),αtβ φ , ψ \varphi,\psi φ,ψ都可导, φ \varphi φ严格单调且 φ ′ ( t ) ≠ 0 \varphi'(t)\ne 0 φ(t)=0
由反函数的可导定理, t = φ − 1 ( x ) , y = ψ ( φ − 1 ( x ) ) t=\varphi^{-1}(x),y=\psi(\varphi^{-1}(x)) t=φ1(x),y=ψ(φ1(x))
d y d x = ψ ′ ( φ − 1 ( x ) ) ( φ − 1 ( x ) ) ′ = ψ ′ ( φ − 1 ( x ) ) φ ′ ( t ) = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\psi'(\varphi^{-1}(x))(\varphi^{-1}(x))'=\frac{\psi'(\varphi^{-1}(x))}{\varphi'(t)}=\frac{\psi'(t)}{\varphi'(t)} dxdy=ψ(φ1(x))(φ1(x))=φ(t)ψ(φ1(x))=φ(t)ψ(t)
实际上也可以从微分公式(一阶微分形式的不变性)出发推出来
{ d x = φ ′ ( t ) d t , d y = ψ ′ ( t ) d t , \left\{\begin{array}{l} dx=\varphi'(t)dt, \\ dy=\psi'(t)dt, \end{array} \right. {dx=φ(t)dt,dy=ψ(t)dt,,即 d y d x = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)} dxdy=φ(t)ψ(t)
【例】【旋轮线(摆线)】 { x = t − sin ⁡ t , y = 1 − cos ⁡ t , 0 ⩽ t ⩽ π \left\{\begin{array}{l} x=t-\sin t, \\ y=1-\cos t, \end{array} \quad 0 \leqslant t \leqslant \pi\right. {x=tsint,y=1cost,0tπ,求 d y d x \frac{dy}{dx} dxdy
【解】 d y d x = sin ⁡ t 1 − cos ⁡ t \frac{dy}{dx}=\frac{\sin t}{1-\cos t} dxdy=1costsint

相关文章:

【数学分析笔记】第4章第4节 复合函数求导法则及其应用(2)

4. 微分 4.4 复合函数求导法则及其应用 【例4.4.3】 y e 1 cos ⁡ x ye^{\sqrt{1\cos x}} ye1cosx ​&#xff0c;求 y ′ y y′ 【解】 y ′ e 1 cos ⁡ x ⋅ 1 2 1 cos ⁡ x ⋅ ( − sin ⁡ x ) − sin ⁡ x 2 1 cos ⁡ x e 1 cos ⁡ x ye^{\sqrt{1\cos x}}\cdot\f…...

【预备理论知识——2】深度学习:线性代数概述

简单地说&#xff0c;机器学习就是做出预测。 线性代数 线性代数是数学的一个分支&#xff0c;主要研究向量空间、线性方程组、矩阵理论、线性变换、特征值和特征向量、内积空间等概念。它是现代数学的基础之一&#xff0c;并且在物理学、工程学、计算机科学、经济学等领域有着…...

【目标检测】yolo的三种数据集格式

目标检测中数据集格式之间的相互转换--coco、voc、yolohttps://zhuanlan.zhihu.com/p/461488682?utm_mediumsocial&utm_psn1825483604463071232&utm_sourcewechat_session【目标检测】yolo的三种数据集格式https://zhuanlan.zhihu.com/p/525950939?utm_mediumsocial&…...

数据分析案例-机器学习工程师薪资数据可视化分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

Django连接Dify、ChatGPT4o并计算tokens数量方法

通过Dify可以连接很多模型国内、国外的都可以进行选择可以到Dify里创建一个空白应用&#xff0c;然后点击进入就可以看到API了api_url "http://192.168.15.131/v1/chat-messages" api_key "app-UtzTpVNwpTLUcGvRNnnK9QNY" headers {"Authorization…...

面试系列-淘天提前批面试

00-淘天提前批面试 在牛客上看到了淘天提前批的面试题目&#xff0c;这里分析一下淘天面试的问了有哪些内容&#xff0c;面试的重点 是偏向哪些方面 项目相关 1、秒杀架构如何设计&#xff1f; 问了秒杀的架构如何设计&#xff0c;对于秒杀的设计&#xff0c;秒杀符合 写多读少…...

计算机中科学中有哪些空间换时间的操作??

计算机中科学中有哪些空间换时间的操作&#xff1f;&#xff1f; 1. SPOOLing (Simultaneous Peripheral Operations On-Line) 原理&#xff1a;SPOOLing 是一种将输入/输出操作缓存到磁盘或内存中的技术&#xff0c;从而在后台处理它们。这可以防止 CPU 等待慢速的外部设备&…...

Mac安装Manim并运行

1.在macOS上创建Python虚拟环境&#xff0c;可以使用venv模块&#xff0c;这是Python自带的库&#xff0c;也可以使用conda。以下是使用venv创建和使用Python虚拟环境的步骤&#xff1a; 打开终端。 创建一个新的目录来存放你的项目&#xff0c;并进入该目录&#xff1a; mk…...

leetcode58:最后一个单词的长度

给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大 子字符串 。 示例 1&#xff1a; 输入&#xff1a;s "Hello World" 输出&#xff…...

18448 最小生成树

### 思路 使用Kruskal算法求解图的最小生成树。Kruskal算法通过对所有边按权值排序&#xff0c;然后逐步选择最小权值的边&#xff0c;确保不会形成环&#xff0c;直到构建出最小生成树。 ### 伪代码 1. 读取输入的结点数n和边数m。 2. 读取每条边的信息&#xff0c;存储在边列…...

前端工程化 - Vue

环境准备 Vue-cli是Vue官方提供的一个脚手架&#xff0c;用户快速生成一个Vue的项目模板。 Vue-cli提供了如下功能&#xff1a; 统一的目录结构本地调试热部署单元测试集成打包上线 需要安装Node.js 安装Vue-cli npm install -g vue/cli通过vue --version指令查看是否安装成…...

使用 NVIDIA H100 上的 Azure 机密计算释放隐私保护 AI 的潜力

通过 NVIDIA H100 上的 Azure 机密计算释放隐私保护 AI 的潜力 文章目录 前言一、机密计算二、使用 NVIDIA H100 Tensor Core GPU 的 Azure 机密计算1. 安全功能2. 可扩展性和可编程性三、场景1. 模型机密性2. 推理/提示机密性3. 使用私有数据进行微调4. 多方培训结论前言 这是…...

目标检测与图像分类:有什么区别?各自的使用场景是什么?

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

Lua 数据类型

Lua 数据类型 Lua 是一种轻量级的编程语言&#xff0c;因其简单性和灵活性而广受欢迎。在 Lua 中&#xff0c;数据类型是编程的基础&#xff0c;它们决定了变量能够存储哪种类型的数据。Lua 的数据类型可以分为以下几个类别&#xff1a; 1. nil nil 是 Lua 中的一个特殊类型…...

复现文章:R语言复现文章画图

文章目录 介绍数据和代码图1图2图6附图2附图3附图4附图5附图6 介绍 文章提供画图代码和数据&#xff0c;本文记录 数据和代码 数据可从以下链接下载&#xff08;画图所需要的所有数据&#xff09;&#xff1a; 百度云盘链接: https://pan.baidu.com/s/1peU1f8_TG2kUKXftkpYq…...

东方仙盟——软件终端架构思维———未来之窗行业应用跨平台架构

一、创生.前世今生 在当今的数字化时代&#xff0c;我们的服务覆盖全球&#xff0c;拥有数亿客户。然而&#xff0c;这庞大的用户规模也带来了巨大的挑战。安全问题至关重要&#xff0c;任何一处的漏洞都可能引发严重的数据泄露危机。网络带宽时刻面临考验&#xff0c;稍有不足…...

支持向量机(SVM)基础教程

一、引言 支持向量机&#xff08;Support Vector Machine&#xff0c;简称SVM&#xff09;是一种高效的监督学习算法&#xff0c;广泛应用 于分类和回归分析。SVM以其强大的泛化能力、简洁的数学形式和优秀的分类效果而备受机器学 习领域的青睐。 二、SVM基本原理 2.1 最大间…...

Python小示例——质地不均匀的硬币概率统计

在概率论和统计学中&#xff0c;随机事件的行为可以通过大量实验来研究。在日常生活中&#xff0c;我们经常用硬币进行抽样&#xff0c;比如抛硬币来决定某个结果。然而&#xff0c;当我们处理的是“质地不均匀”的硬币时&#xff0c;事情就变得复杂了。质地不均匀的硬币意味着…...

京东web 京东e卡绑定 第二部分分析

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 有相关问题请第一时间头像私信联系我删…...

【数据结构与算法】Greedy Algorithm

1) 贪心例子 称之为贪心算法或贪婪算法&#xff0c;核心思想是 将寻找最优解的问题分为若干个步骤每一步骤都采用贪心原则&#xff0c;选取当前最优解因为没有考虑所有可能&#xff0c;局部最优的堆叠不一定让最终解最优 贪心算法是一种在每一步选择中都采取在当前状态下最好…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...