使用Pytorch构建自定义层并在模型中使用
使用Pytorch构建自定义层并在模型中使用
继承自nn.Module类,自定义名称为NoisyLinear的线性层,并在新模型定义过程中使用该自定义层。完整代码可以在jupyter nbviewer中在线访问。
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoaderimport numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from mlxtend.plotting import plot_decision_regions
print(torch.__version__)
print(np.__version__)
2.0.1+cu118
1.24.4
创建一个包含有噪声的线性层
class NoisyLinear(nn.Module):def __init__(self, input_size, output_size, noise_stddev=0.1):super().__init__()w = torch.Tensor(input_size, output_size)self.w = nn.Parameter(w)nn.init.xavier_uniform_(self.w)b = torch.Tensor(output_size).fill_(0)self.b = nn.Parameter(b)self.noise_stddev = noise_stddevdef forward(self, x, training=False):if training:noise = torch.normal(0.0, self.noise_stddev, x.shape)x_new = torch.add(x, noise)else:x_new = xreturn torch.add(torch.mm(x_new, self.w), self.b)
这段代码定义了一个名为 NoisyLinear 的类,它继承自 nn.Module,表示一个包含噪声的线性层。
class NoisyLinear(nn.Module):
定义一个名为 NoisyLinear 的类,它继承自 PyTorch 的 nn.Module 类。这意味着它可以被用作一种神经网络层。
def __init__(self, input_size, output_size, noise_stddev=0.1):
初始化方法 __init__ 接受三个参数:输入大小 input_size,输出大小 output_size,以及噪声的标准差 noise_stddev(默认值为 0.1)。
super().__init__()
调用父类 nn.Module 的初始化方法,以确保父类的相关属性和方法被正确初始化。
w = torch.Tensor(input_size, output_size)
创建一个形状为 (input_size, output_size) 的张量 w,用于存储权重。
self.w = nn.Parameter(w)
将权重 w 包装为 nn.Parameter,这意味着在训练过程中,PyTorch 会自动将其视为可学习参数。
nn.init.xavier_uniform_(self.w)
使用 Xavier 均匀分布对权重 self.w 进行初始化。这是一种常用的初始化方法,有助于保持神经网络中信号的方差。
b = torch.Tensor(output_size).fill_(0)
创建一个形状为 (output_size,) 的张量 b,并将其填充为 0,用于存储偏置。
self.b = nn.Parameter(b)
将偏置 b 包装为 nn.Parameter,使其在训练过程中也是可学习的。
self.noise_stddev = noise_stddev
将噪声的标准差 noise_stddev 存储为类的一个属性,用于后续的噪声计算。
def forward(self, x, training=False):
定义前向传播方法 forward,接受输入 x 和一个布尔参数 training,指示当前是否在训练模式下。
if training:
检查当前是否处于训练模式。
noise = torch.normal(0.0, self.noise_stddev, x.shape)
如果是训练模式,则创建一个与输入 x 形状相同的噪声张量 noise,其服从均值为 0、标准差为 self.noise_stddev 的正态分布。
x_new = torch.add(x, noise)
将噪声添加到输入 x 上,得到新的输入 x_new。
else:
如果不是训练模式,则执行以下代码。
x_new = x
在非训练模式下,x_new 直接设置为输入 x,即没有添加噪声。
return torch.add(torch.mm(x_new, self.w), self.b)
计算输出:首先用 torch.mm 进行矩阵乘法(x_new 和权重 self.w),然后将偏置 self.b 添加到结果中。最后返回计算出的输出。
总结来说,这个类实现了一个带噪声的线性变换,在线性层中可以根据训练模式选择性地添加噪声。
# 上述层的使用示例.
# 1、实例化这个层,并调用三次.
torch.manual_seed(1)noisy_layer = NoisyLinear(4, 2)
x = torch.zeros((1, 4))
print(noisy_layer(x, training=True))print(noisy_layer(x, training=True))print(noisy_layer(x, training=False))
tensor([[ 0.1154, -0.0598]], grad_fn=<AddBackward0>)
tensor([[ 0.0432, -0.0375]], grad_fn=<AddBackward0>)
tensor([[0., 0.]], grad_fn=<AddBackward0>)
在一个示例数据上,构建一个包含该自定义层的模型
# 生成一个示例数据.
np.random.seed(1)
torch.manual_seed(1)
x = np.random.uniform(low=-1, high=1, size=(200, 2))
y = np.ones(len(x))
y[x[:, 0] * x[:, 1]<0] = 0n_train = 100
x_train = torch.tensor(x[:n_train, :], dtype=torch.float32)
y_train = torch.tensor(y[:n_train], dtype=torch.float32)
x_valid = torch.tensor(x[n_train:, :], dtype=torch.float32)
y_valid = torch.tensor(y[n_train:], dtype=torch.float32)fig = plt.figure(figsize=(6, 6))
plt.plot(x[y==0, 0], x[y==0, 1], 'o', alpha=0.75, markersize=10)
plt.plot(x[y==1, 0], x[y==1, 1], '<', alpha=0.75, markersize=10)
plt.xlabel(r'$x_1$', size=15)
plt.ylabel(r'$x_2$', size=15)
plt.tight_layout()
plt.show()

# 创建一个DataLoader.
train_ds = TensorDataset(x_train, y_train)
batch_size = 2
torch.manual_seed(1)# 使用DataLoader加载数据,batchsize为2.
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
# 创建一个新的模型,并且调用上述的自定义层.
class MyNoiseModule(nn.Module):def __init__(self):super().__init__()self.l1 = NoisyLinear(2, 4, 0.07)self.a1 = nn.ReLU()self.l2 = nn.Linear(4, 4)self.a2 = nn.ReLU()self.l3 = nn.Linear(4, 1)self.a3 = nn.Sigmoid()def forward(self, x, training=False):x = self.l1(x, training)x = self.a1(x)x = self.l2(x)x = self.a2(x)x = self.l3(x)x = self.a3(x)return xdef predict(self, x):self.eval()with torch.no_grad():x = torch.tensor(x, dtype=torch.float32)pred = self.forward(x)[:, 0]return (pred>=0.5).float()
# 模型实例化.
torch.manual_seed(1)
model = MyNoiseModule()
model
MyNoiseModule((l1): NoisyLinear()(a1): ReLU()(l2): Linear(in_features=4, out_features=4, bias=True)(a2): ReLU()(l3): Linear(in_features=4, out_features=1, bias=True)(a3): Sigmoid()
)
# 3.在训练training batch上计算预测结果.
loss_fn = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.015)
# 模型训练,设置epochs=200
torch.manual_seed(1)
num_epochs = 200def train(model, num_epochs, train_dl, x_valid, y_valid):loss_hist_train = [0] * num_epochsacc_hist_train = [0] * num_epochsloss_hist_valid = [0] * num_epochsacc_hist_valid = [0] * num_epochsfor epoch in range(num_epochs):for x_batch, y_batch in train_dl:pred = model(x_batch, True)[:, 0]loss = loss_fn(pred, y_batch)loss.backward()optimizer.step()optimizer.zero_grad()loss_hist_train[epoch] += loss.item()is_correct = ((pred>=0.5).float() == y_batch).float()acc_hist_train[epoch] += is_correct.mean()loss_hist_train[epoch] /= n_train/batch_sizeacc_hist_train[epoch] /= n_train/batch_sizepred = model(x_valid)[:, 0]loss = loss_fn(pred, y_valid)loss_hist_valid[epoch] = loss.item()is_correct = ((pred>=0.5).float() == y_valid).float()acc_hist_valid[epoch] += is_correct.mean()return loss_hist_train, loss_hist_valid, \acc_hist_train, acc_hist_validhistory = train(model, num_epochs, train_dl, x_valid, y_valid)
# 绘制决策边界.
fig = plt.figure(figsize=(16, 4))
ax = fig.add_subplot(1, 3, 1)
plt.plot(history[0], lw=4)
plt.plot(history[1], lw=4)
plt.legend(['Train loss', 'Validation loss'], fontsize=15)
ax.set_xlabel('Epochs', size=15)ax = fig.add_subplot(1, 3, 2)
plt.plot(history[2], lw=4)
plt.plot(history[3], lw=4)
plt.legend(['Train acc.', 'Validation acc.'], fontsize=15)
ax.set_xlabel('Epochs', size=15)ax = fig.add_subplot(1, 3, 3)
plot_decision_regions(X=x_valid.numpy(), y=y_valid.numpy().astype(np.int64),clf=model)
ax.set_xlabel(r'$x_1$', size=15)
ax.xaxis.set_label_coords(1, -0.025)
ax.set_ylabel(r'$x_2$', size=15)
ax.yaxis.set_label_coords(-0.025, 1)
plt.show()

相关文章:
使用Pytorch构建自定义层并在模型中使用
使用Pytorch构建自定义层并在模型中使用 继承自nn.Module类,自定义名称为NoisyLinear的线性层,并在新模型定义过程中使用该自定义层。完整代码可以在jupyter nbviewer中在线访问。 import torch import torch.nn as nn from torch.utils.data import T…...
学习记录:js算法(五十六):从前序与中序遍历序列构造二叉树
文章目录 从前序与中序遍历序列构造二叉树我的思路网上思路 总结 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示…...
qt使用QDomDocument读写xml文件
在使用QDomDocument读写xml之前需要在工程文件添加: QT xml 1.生成xml文件 void createXml(QString xmlName) {QFile file(xmlName);if (!file.open(QIODevice::WriteOnly | QIODevice::Truncate |QIODevice::Text))return false;QDomDocument doc;QDomProcessin…...
Oracle架构之表空间详解
文章目录 1 表空间介绍1.1 简介1.2 表空间分类1.2.1 SYSTEM 表空间1.2.2 SYSAUX 表空间1.2.3 UNDO 表空间1.2.4 USERS 表空间 1.3 表空间字典与本地管理1.3.1 字典管理表空间(Dictionary Management Tablespace,DMT)1.3.2 本地管理方式的表空…...
springboot整合seata
一、准备 docker部署seata-server 1.5.2参考:docker安装各个组件的命令 二、springboot集成seata 2.1 引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId>&…...
鸿蒙开发(NEXT/API 12)【二次向用户申请授权】程序访问控制
当应用通过[requestPermissionsFromUser()]拉起弹框[请求用户授权]时,用户拒绝授权。应用将无法再次通过requestPermissionsFromUser拉起弹框,需要用户在系统应用“设置”的界面中,手动授予权限。 在“设置”应用中的路径: 路径…...
docker export/import 和 docker save/load 的区别
Docker export/import 和 docker save/load 都是用于容器和镜像的备份和迁移,但它们有一些关键的区别: docker export/import: export 作用于容器,import 创建镜像导出的是容器的文件系统,不包含镜像的元数据丢失了镜像的层级结构…...
明星周边销售网站开发:SpringBoot技术全解析
1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…...
STM32+ADC+扫描模式
1 ADC简介 1 ADC(模拟到数字量的桥梁) 2 DAC(数字量到模拟的桥梁),例如:PWM(只有完全导通和断开的状态,无功率损耗的状态) DAC主要用于波形生成(信号发生器和音频解码器) 3 模拟看门狗自动监…...
R语言绘制散点图
散点图是一种在直角坐标系中用数据点直观呈现两个变量之间关系、可检测异常值并探索数据分布的可视化图表。它是一种常用的数据可视化工具,我们通过不同的参数调整和包的使用,可以创建出满足各种需求的散点图。 常用绘制散点图的函数有plot()函数和ggpl…...
安装最新 MySQL 8.0 数据库(教学用)
安装 MySQL 8.0 数据库(教学用) 文章目录 安装 MySQL 8.0 数据库(教学用)前言MySQL历史一、第一步二、下载三、安装四、使用五、语法总结 前言 根据 DB-Engines 网站的数据库流行度排名(2024年)࿰…...
微信小程序开发-配置文件详解
文章目录 一,小程序创建的配置文件介绍二,配置文件-全局配置-pages 配置作用:注意事项:示例: 三,配置文件-全局配置-window 配置示例: 四,配置文件-全局配置-tabbar 配置核心作用&am…...
TCP/UDP初识
TCP是面向连接的、可靠的、基于字节流的传输层协议。 面向连接:一定是一对一连接,不能像 UDP 协议可以一个主机同时向多个主机发送消息 可靠的:无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个报文一定能够到达接收端…...
【大数据】在线分析、近线分析与离线分析
文章目录 1. 在线分析(Online Analytics)定义特点应用场景技术栈 2. 近线分析(Nearline Analytics)定义特点应用场景技术栈 3. 离线分析(Offline Analytics)定义特点应用场景技术栈 总结 在线分析ÿ…...
【unity进阶知识9】序列化字典,场景,vector,color,Quaternion
文章目录 前言一、可序列化字典类普通字典简单的使用可序列化字典简单的使用 二、序列化场景三、序列化vector四、序列化color五、序列化旋转Quaternion完结 前言 自定义序列化的主要原因: 可读性:使数据结构更清晰,便于理解和维护。优化 I…...
传奇GOM引擎架设好进游戏后提示请关闭非法外挂,重新登录,如何处理?
今天在架设一个GOM引擎的版本时,进游戏之后刚开始是弹出一个对话框,提示请关闭非法外挂,重新登录,我用的是绿盟登陆器,同时用的也是绿盟插件,刚开始我以为是绿盟登录器的问题,于是就换成原版gom…...
OpenCV视频I/O(15)视频写入类VideoWriter之标识视频编解码器函数fourcc()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 将 4 个字符拼接成一个 FourCC 代码。 在 OpenCV 中,fourcc() 函数用于生成 FourCC 代码,这是一种用于标识视频编解码器的…...
rust log选型
考察了最火的tracing。但是该模块不支持compact,仅支持根据时间进行rotate。 daily Creates a daily-rotating file appender. hourly Creates an hourly-rotating file appender. minutely Creates a minutely-rotating file appender. This will rotate the log…...
数据库-分库分表
什么是分库分表 分库分表是一种数据库优化策略。 目的:为了解决由于单一的库表数据量过大而导致数据库性能降低的问题 分库:将原来独立的数据库拆分成若干数据库组成 分表:将原来的大表(存储近千万数据的表)拆分成若干个小表 什么时候考虑分…...
基于SSM的校园社团管理系统的设计 社团信息管理 智慧社团管理社团预约系统 社团活动管理 社团人员管理 在线社团管理社团资源管理(源码+定制+文档)
博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
Linux系统:进程间通信-匿名与命名管道
本节重点 匿名管道的概念与原理匿名管道的创建命名管道的概念与原理命名管道的创建两者的差异与联系命名管道实现EchoServer 一、管道 管道(Pipe)是一种进程间通信(IPC, Inter-Process Communication)机制,用于在不…...
使用python进行图像处理—图像变换(6)
图像变换是指改变图像的几何形状或空间位置的操作。常见的几何变换包括平移、旋转、缩放、剪切(shear)以及更复杂的仿射变换和透视变换。这些变换在图像配准、图像校正、创建特效等场景中非常有用。 6.1仿射变换(Affine Transformation) 仿射变换是一种…...
2025-06-01-Hive 技术及应用介绍
Hive 技术及应用介绍 参考资料 Hive 技术原理Hive 架构及应用介绍Hive - 小海哥哥 de - 博客园https://cwiki.apache.org/confluence/display/Hive/Home(官方文档) Apache Hive 是基于 Hadoop 构建的数据仓库工具,它为海量结构化数据提供类 SQL 的查询能力…...
docker容器互联
1.docker可以通过网路访问 2.docker允许映射容器内应用的服务端口到本地宿主主机 3.互联机制实现多个容器间通过容器名来快速访问 一 、端口映射实现容器访问 1.从外部访问容器应用 我们先把之前的删掉吧(如果不删的话,容器就提不起来,因…...
数据库优化实战指南:提升性能的黄金法则
在现代软件系统中,数据库性能直接影响应用的响应速度和用户体验。面对数据量激增、访问压力增大,数据库性能瓶颈经常成为项目痛点。如何科学有效地优化数据库,提升查询效率和系统稳定性,是每位开发与运维人员必备的技能。 本文结…...
Vue.js教学第二十一章:vue实战项目二,个人博客搭建
基于 Vue 的个人博客网站搭建 摘要: 随着前端技术的不断发展,Vue 作为一种轻量级、高效的前端框架,为个人博客网站的搭建提供了极大的便利。本文详细介绍了基于 Vue 搭建个人博客网站的全过程,包括项目背景、技术选型、项目架构设计、功能模块实现、性能优化与测试等方面。…...
