算法笔记(十三)——BFS 解决最短路问题
文章目录
- 迷宫中离入口最近的出口
- 最小基因变化
- 单词接龙
- 为高尔夫比赛砍树
BFS 解决最短路问题
BFS(广度优先搜索) 是解决最短路径问题的一种常见算法。在这种情况下,我们通常使用BFS来查找从一个起始点到目标点的最短路径。
迷宫中离入口最近的出口
题目:迷宫中离入口最近的出口

思路
图论中边路权值为1的情况,利用层序遍历来解决是最经典的做法。
从起点开始层序遍历,在遍历的过程中记录当前遍历的层数。
C++代码
class Solution
{int dx[4] = {0, 0, 1, -1};int dy[4] = {-1, 1, 0, 0};public:int nearestExit(vector<vector<char>>& maze, vector<int>& entrance) {int m = maze.size(), n = maze[0].size();vector<vector<bool>> visited(m, vector<bool>(n, false));int ret = 0; queue<pair<int, int>> q; q.push({entrance[0], entrance[1]});visited[entrance[0]][entrance[1]] = true;while(q.size()){ret++;int sz = q.size();for(int i = 0; i < sz; i++){auto [a, b] = q.front(); q.pop();for(int k = 0; k < 4; k++){int x = a + dx[k], y = b + dy[k];if(0 <= x && x < m && 0 <= y && y < n && maze[x][y] == '.' && !visited[x][y]){if(x == 0 || x == m - 1 || y == 0 || y == n - 1) return ret;q.push({x, y});visited[x][y] = true;}}}}return -1;}
};
最小基因变化
题目:最小基因变化

思路
转化成边路权值为1的图论问题
-
用
unordered_set<string> hash(bank.begin(), bank.end());来存储基因库,快速判断该基因是否存在于基因库 -
枚举出的每一个位置,我们先判断其是否为
合法基因(如果基因库中有并且该基因没有被访问) -
用一个
unordered_set<string> visited;用于标记是否访问过该基因序列 -
用BFS,尝试每个位置可能变异后得结果,如果变异后的基因是
合法基因,就加入队列中,并标记为已访问
C++代码
class Solution
{
public:int minMutation(string startGene, string endGene, vector<string>& bank) {unordered_set<string> hash(bank.begin(), bank.end()); // 创建一个hash方便判断该基因序列是否合法unordered_set<string> visited; // 用于标记是否访问过该基因序列string change = "ACGT"; // 可能的基因变异字符if(startGene == endGene) return 0; // 起始基因和目标基因相同,不用改变if(!hash.count(endGene)) return -1; // 目标基因不在基因库,返回-1queue<string> q;q.push(startGene); // 起始基因入队visited.insert(startGene); // 标记起始基因被访问int ret = 0;while(!q.empty()){int sz = q.size();ret++;while(sz--){string t = q.front();q.pop();for(int i = 0; i < 8; i++) // 遍历每个位置{string tmp = t;for(int j = 0; j < 4; j++) // 每个位置更改 4 次{tmp[i] = change[j];// 如果基因库中有并且该基因没有被访问,则为合法基因if(hash.count(tmp) && !visited.count(tmp)) {// 合法基因等于目标基因返回结果if(tmp == endGene)return ret;// 合法基因入队并且标记访问过了q.push(tmp);visited.insert(tmp);}}}}}return -1;}
};
单词接龙
题目:单词接龙

思路
和上一题的思路一毛一样,只不过上题每个位置变化只有四种可能,而这题每个位置的变换有二十六种可能性
C++代码
class Solution
{
public:int ladderLength(string beginWord, string endWord, vector<string>& wordList) {unordered_set<string> visited; // 记录该单词是否访问过了unordered_set<string> hash(wordList.begin(), wordList.end());if (beginWord == endWord) return 1; // 起始单词和目标单词相同,不用改变if (!hash.count(endWord)) return 0; // 目标单词不在wordList,返回 0 queue<string> q;q.push(beginWord); // 起始单词入队visited.insert(beginWord); // 标记起始单词被访问int ret = 1;while(!q.empty()){ret++;int sz = q.size();while(sz--){string t = q.front();q.pop(); for(int i = 0; i < t.size(); i++) // 遍历单词的每个位置{string tmp = t;for(char ch = 'a'; ch <= 'z'; ch++) // 每个位置更改 26 次{tmp[i] = ch;// 判断是否为合法单词if(hash.count(tmp) && !visited.count(tmp)){if (tmp == endWord) return ret;q.push(tmp);visited.insert(tmp);}}}}}return 0;}
};
为高尔夫比赛砍树
题目:为高尔夫比赛砍树

思路
其实本题就是多次的迷宫问题累计求和,不停的变换起始位置
(x, y)以及终止位置(nx, ny)
- 遍历森林,将树木的位置加入
trees数组中 - 树木的高度进行排序
- 用
BFS计算起始位置(x, y)以及终止位置(nx, ny)的距离 - 累加步数,并更新起始位置
(x, y)
C++代码
class Solution
{int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};int m, n;bool visited[51][51];int bfs(vector<vector<int>>& forest, int x, int y, int nx, int ny) {if (x == nx && y == ny) return 0; // 如果起始位置和目标位置相同,步数为0queue<pair<int, int>> q;memset(visited, 0, sizeof visited);q.push({x, y});visited[x][y] = true;int ret = 0;while(!q.empty()){ ret++;int sz = q.size();while(sz--){auto [a, b] = q.front();q.pop();for(int k = 0; k < 4; k++){int x = a + dx[k], y = b + dy[k];if(0 <= x && x < m && 0 <= y && y < n && forest[x][y] && !visited[x][y]){if (x == nx && y == ny) // 如果到达目标位置,返回步数return ret;q.push({x, y});visited[x][y] = true;}}}}return -1;}public:int cutOffTree(vector<vector<int>>& forest) {m = forest.size(), n = forest[0].size();// 将树的坐标存放起来vector<pair<int, int>> trees;for(int i = 0; i < m; i++)for(int j = 0; j < n; j++)if (forest[i][j] > 1) trees.push_back({i, j});// 根据树木的高度进行排序sort(trees.begin(), trees.end(), [&](const pair<int, int>& p1, const pair<int, int>& p2) {return forest[p1.first][p1.second] < forest[p2.first][p2.second];});int x = 0, y = 0; // 起始位置(0, 0)int ret = 0;// 从小到大遍历for(auto& [nx, ny] : trees){int step = bfs(forest, x, y, nx, ny);if(step == -1) return -1;ret += step;x = nx, y = ny; // 更新起始位置}return ret;}
};
相关文章:
算法笔记(十三)——BFS 解决最短路问题
文章目录 迷宫中离入口最近的出口最小基因变化单词接龙为高尔夫比赛砍树 BFS 解决最短路问题 BFS(广度优先搜索) 是解决最短路径问题的一种常见算法。在这种情况下,我们通常使用BFS来查找从一个起始点到目标点的最短路径。 迷宫中离入口最近的出口 题目:…...
Android 简单实现联系人列表+字母索引联动效果
效果如上图。 Main Ideas 左右两个列表左列表展示人员数据,含有姓氏首字母的 header item右列表是一个全由姓氏首字母组成的索引列表,点击某个item,展示一个气泡组件(它会自动延时关闭), 左列表滚动并显示与点击的索引列表item …...
自动驾驶-问题笔记-待解决
参考线的平滑方法 参考线平滑算法主要有三种: 离散点平滑;螺旋曲线平滑;多项式平滑; 参考链接:参考线平滑 对于平滑方法,一直不太理解平滑、拟合以及滤波三者的作用与区别; 规划的起点&#x…...
在掌控板中加载人教版信息科技教学指南中的educore库
掌控板中加载educore库 人教信息科技数字资源平台(https://ebook.mypep.cn/free)中的《信息科技教学指南硬件编程代码说明》文件中提到“本程序说明主要供教学参考。需要可编程主控板须支持运行MicroPython 脚本程序。希望有更多的主控板在固件中支持ed…...
关于CSS Grid布局
关于CSS Grid布局 实际效果参考 参考代码 <template><view class"baseInfo"><up-image class"cover" height"160rpx" width"120rpx" :src"bookInfo.cover"><template #error><view style"…...
初始爬虫12(反爬与反反爬)
学到这里,已经可以开始实战项目了,多去爬虫,了解熟悉反爬,然后自己总结出一套方法怎么做。 1.服务器反爬的原因 服务器反爬的原因 总结: 1.爬虫占总PV较高,浪费资源 2.资源被批量抓走,丧失竞争力…...
成像基础 -- 最大对焦清晰的物距计算
最大对焦清晰的物距计算 1. 基本概念 最大对焦清晰的物距通常与景深(Depth of Field, DOF)相关,尤其是无穷远处的物体可以被清晰对焦到的距离,称为超焦距(Hyperfocal Distance)。通过计算超焦距ÿ…...
win10服务器启动且未登录时自动启动程序
场景:公司服务器安装了几个程序,当服务器断电重启之后希望程序能自动打开,而不需要手动登录服务器打开。 因为软件是自己开发的所以安全方面这里没有考虑。 1.打开服务器管理器,点击工具,选择任务计划程序 2.在任务计…...
算法专题四: 前缀和
目录 1. 前缀和2. 二维前缀和3. 寻找数组的中心下标4. 除自身以外数组的乘积5. 和为k的子数组6. 和可被K整除的子数组7. 连续数组8. 矩阵区域和 博客主页:酷酷学!!! 感谢关注~ 1. 前缀和 算法思路: 根据题意, 创建一个前缀和数组, dp[i] dp[i -1] arr[i], 再使用前缀和数组,…...
【Linux】基础IO(文件描述符、缓冲区、重定向)
🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12625432.html 目录 前言 C文件IO相关操作 系统文件I/O open open函数返回值 文件描述符fd re…...
一篇文章快速学会docker容器技术
目录 一、Docker简介及部署方法 1.1Docker简介 1.1.1什么是docker 1.1.2 docker在企业中的应用场景 1.1.3 docker与虚拟化的对比 1.1.4 docker的优势 二 、部署docker 2.1 容器工作方法 2.2 部署第一个容器 2.2.1 配置软件仓库 2.2.2 安装docker-ce并启动服务 2.2.…...
【MySQL】使用 JDBC 连接数据库
文章目录 前言1. 认识 JDBC1.1 概念1.2 好处 2. 使用 JDBC2.1 安装数据驱动包2.2 把 jar 包导入到项目中2.3 代码编写2.4 测试结果 3. 代码优化4. 源码展示结语 前言 在 MySQL 系列中,我们介绍了很多内容,包括但不限于建库建表,增删查改等等…...
数据结构与算法笔记:概念与leetcode练习题
1、数组Array 时间复杂度 数组访问:O(1) 数组搜索:O(N) 数组插入:O(N) 数组删除:O(N) 特点 适合读,不适合写 数组常用操作 # 1、创建数组 a [] # 2、尾部添加元素 a.append(1) a.append(2) a.append(3) # 3、…...
十大时间序列预测模型
目录 1. 自回归模型 原理 核心公式 推导过程: 完整案例 2. 移动平均模型 原理 核心公式 推导过程: 完整案例 3. 自回归移动平均模型 原理 核心公式 推导过程: 完整案例 4. 自回归积分移动平均模型 原理 核心公式 推导过程 完整案例 5. 季节性自回归积分…...
G2O 通过工厂函数类 OptimizationAlgorithmFactory 来生成固定搭配的优化算法
OptimizationAlgorithmFactory 类位于 optimization_algorithm_factory.h //***g2o源码 g2o/g2o/core/optimization_algorithm_factory.h ***// /*** \brief create solvers based on their short name** Factory to allocate solvers based on their short name.* The Factor…...
手机USB连接不显示内部设备,设备管理器显示“MTP”感叹号,解决方案
进入小米驱动下载界面,等小米驱动下载完成后,解压此驱动文件压缩包。 5、小米USB驱动安装方法:右击“计算机”,从弹出的右键菜单中选择“管理”项进入。 6、在打开的“计算机管理”界面中,展开“设备管理器”项&…...
SpringBootWeb快速入门!详解如何创建一个简单的SpringBoot项目?
在现代Web开发中,SpringBoot以其简化的配置和快速的开发效率而受到广大开发者的青睐。本篇文章将带领你从零开始,搭建一个基于SpringBoot的简单Web应用~ 一、前提准备 想要创建一个SpringBoot项目,需要做如下准备: idea集成开发…...
RabbitMQ 入门到精通指南
RabbitMQ 是一种开源消息代理软件,基于 AMQP(高级消息队列协议)构建,用于异步传输数据,帮助我们解耦系统、削峰流量、处理高并发。本指南将详细介绍 RabbitMQ 的架构设计、使用场景、安装步骤以及一些高级应用…...
ARM base instruction -- movz
Move wide with zero moves an optionally-shifted 16-bit immediate value to a register. 用零移动宽值将可选移位的16位即时值移动到寄存器。即把立即数移动寄存器前先把寄存器清零。 32-bit variant MOVZ <Wd>, #<imm>{, LSL #<shift>} 64-bit var…...
安装jdk安装开发环境与maven
1.下载maven 链接: https://pan.baidu.com/s/1gTmIWBFBdIQob0cqGG3E_Q 提取码: 42ck,apache-maven-3.8.4-bin.zip 2.安装java jdk yum install -y java-1.8.0-openjdk-devel 3.在/opt目录下新建目录 mkdir /opt/maven 4.将apache-maven-3.8.4-bin.zip上传到/opt/ma…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
