当前位置: 首页 > news >正文

15分钟学 Python 第41天:Python 爬虫入门(六)第二篇

Day41:Python爬取猫眼电影网站的电影信息

1. 项目背景

在本项目中,我们将使用 Python 爬虫技术从猫眼电影网站抓取电影信息。猫眼电影是一个知名的电影信息平台,提供了丰富的电影相关数据。通过这个练习,您将深入学习如何抓取动态网站的数据,包括发送请求、解析 JSON 数据、处理分页等基本技术。

2. 项目目标

  • 爬取猫眼电影网站的电影信息,包括电影名称、评分、票房、上映时间等。
  • 将抓取的数据保存为CSV文件,便于后续分析与使用。

3. 核心工具

  • Python 3.x :编程语言环境。
  • requests :用于发送 HTTP 请求。
  • json :用于解析 JSON 数据。
  • pandas :用于数据存储和处理。
  • BeautifulSoup :用于解析 HTML 文档(如需处理 HTML 内容)。

4. 环境准备

确保您的环境中安装了以下库。在终端中运行以下命令:

pip install requests pandas beautifulsoup4

5. 数据抓取流程

5.1 确定目标网址和接口

我们要爬取的猫眼电影数据源是一个 API 接口,可以通过特定的 GET 请求获取数据。猫眼的电影数据接口如下:

https://maoyan.com/board/4

5.2 发送请求

使用 requests 库向网页发送请求,获取网页内容。

5.3 解析JSON数据

使用 json 库解析获取的 JSON 数据。

5.4 提取电影信息

从解析的内容中提取所需的电影信息。

5.5 处理分页

处理多页数据,确保提取到所有电影信息。

5.6 数据存储

将提取到的数据存储为 CSV 文件。

5.7 运行流程图

开始
发送请求到猫眼
获取JSON内容
解析JSON数据
提取电影信息
处理分页
存储数据到CSV
结束

6. 示例代码

以下是完整的代码示例,分为几个功能部分以便更好理解。

6.1 导入必要的库

import requests
import pandas as pd
import json
import time

6.2 发送请求并获取页面内容

def fetch_movies(page):url = f'https://maoyan.com/board/4?offset={page * 10}'headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}response = requests.get(url, headers=headers)if response.status_code == 200:return response.textelse:print("请求失败", response.status_code)return None

6.3 解析HTML并提取信息

def parse_movies(html):movies = []soup = BeautifulSoup(html, 'html.parser')for item in soup.find_all('div', class_='movie-item-info'):title = item.find('p', class_='name').text.strip()star = item.find('p', class_='star').text.strip()score = item.find('p', class_='score').text.strip()release_time = item.find('p', class_='releaese').text.strip().split(':')[-1]movies.append({'Title': title,'Star': star,'Score': score,'Release Time': release_time})return movies

6.4 存储数据到CSV

def save_to_csv(movies, filename='maoyan_movies.csv'):df = pd.DataFrame(movies)df.to_csv(filename, index=False, encoding='utf-8-sig')print(f"数据已保存到 {filename}")

6.5 主程序

def main():all_movies = []for page in range(10):  # 爬取前 10 页数据html = fetch_movies(page)if html:movies = parse_movies(html)all_movies.extend(movies)time.sleep(2)  # 添加延迟,避免请求过快save_to_csv(all_movies)if __name__ == '__main__':main()

7. 数据分析与检查

运行完毕后,我们可以使用 pandas 读取 CSV 文件并检查数据:

def load_and_check_csv(filename='maoyan_movies.csv'):df = pd.read_csv(filename)print(df.head())print(f"总电影数: {len(df)}")load_and_check_csv()

8. 样例输出

执行后,输出的 maoyan_movies.csv 文件中将包含如下示例数据:

TitleStarScoreRelease Time
你好,李焕英张小斐,贾玲9.62021-02-12
你的婚礼祝绪丹,陈飞宇9.22021-02-14
夺冠巩俐,黄渤9.02020-12-02

9. 注意事项

  1. 反爬虫机制:猫眼可能会使用反爬虫机制,建议在请求之间加上延迟,模拟人类访问。
  2. 合法合规:请遵循猫眼的使用协议,确保抓取信息不违反网站政策。
  3. 数据质量:抓取的数据质量可能会受到影响,需要进行数据清洗和校验。

10. 总结

通过本项目,您学习了如何使用 Python 爬虫技术从猫眼电影网站中抓取电影信息。掌握了数据获取、解析和存储的基本流程。接下来,可以尝试改进程序,例如:抓取更详细的电影信息,尝试其他页面或增加异常处理等,以深入理解 Python 爬虫的应用潜力。


在这里插入图片描述
怎么样今天的内容还满意吗?再次感谢观众老爷的观看。
最后,祝您早日实现财务自由,还请给个赞,谢谢!

相关文章:

15分钟学 Python 第41天:Python 爬虫入门(六)第二篇

Day41:Python爬取猫眼电影网站的电影信息 1. 项目背景 在本项目中,我们将使用 Python 爬虫技术从猫眼电影网站抓取电影信息。猫眼电影是一个知名的电影信息平台,提供了丰富的电影相关数据。通过这个练习,您将深入学习如何抓取动…...

电脑提示d3dcompiler_47.dll缺失怎么修复,仔细介绍dll的解决方法

1. d3dcompiler_47.dll 概述 1.1 定义与作用 d3dcompiler_47.dll 是 Microsoft DirectX 的一个关键组件,作为一个动态链接库(DLL)文件,它在 Windows 操作系统中扮演着至关重要的角色。DirectX 是一套由微软开发的用于处理多媒体…...

CPU中的寄存器是什么以及它的工作原理是什么?

在计算机科学中,寄存器是数字设备中的一个重要组成部分,它用于存储数据和指令以快速处理。寄存器充当临时存储区,信息可以在这里被快速访问和操作,以执行复杂任务。寄存器是计算机中最基础的存储类型,它们在帮助机器高…...

【EXCEL数据处理】000021 案例 保姆级教程,附多个操作案例。EXCEL文档安全性设置。

前言:哈喽,大家好,今天给大家分享一篇文章!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【EXCEL数据处理】000021 案例 保姆级教程,附多个操作案例。…...

windows7 32bit安装JDK以及EclipseEE

如果你的电脑是 Windows 7 32-bit 系统,那么需要下载并安装适用于 32-bit 系统的 JDK 和 Eclipse EE。以下是具体的步骤和下载链接: 1. 下载并安装适用于 Windows 32-bit 的 JDK 1.1 下载适用于 32-bit 的 JDK Oracle 不再提供最新版本的 32-bit JDK&…...

Python中的Enum

Python中的Enum Enum(枚举)在很多应用场景中都会出现,因此绝大部分编程语言都实现了Enum类型,Python也不列外,但列外的是Enum在Python3.4中才被正式支持,我们先来看看Python3中的Enum是怎么使用的。 枚举的…...

于BERT的中文问答系统12

主要改进点 日志配置: 确保日志文件按日期和时间生成,便于追踪不同运行的记录。 数据处理: 增加了对数据加载过程中错误的捕获和日志记录,确保程序能够跳过无效数据并继续运行。 模型训练: 增加了重新训练模型的功…...

基于SpringBoot“花开富贵”花园管理系统【附源码】

效果如下: 系统注册页面 系统首页界面 植物信息详细页面 后台登录界面 管理员主界面 植物分类管理界面 植物信息管理界面 园艺记录管理界面 研究背景 随着城市化进程的加快和人们生活质量的提升,越来越多的人开始追求与自然和谐共生的生活方式&#xf…...

MySQL连接查询:自连接

先看我的表结构 emp表 自连接也就是把一个表看作是两个作用的表就好,也就是说我把emp看作员工表,也看做领导表 自连接 基本语法 select 字段列表 FROM 表A 别名A JOIN 表A 别名B ON 条件;例子1:查询员工 及其 所属领导的名字 select a.n…...

Prometheus+Grafana备忘

Grafana安装 官网 https://grafana.com/grafana/download 官网提供了几种安装方式,我用最简单的 yum install -y https://dl.grafana.com/enterprise/release/grafana-enterprise-11.2.2-1.x86_64.rpm启动 //如果需要在系统启动时自动启动Grafana,可以…...

基于ssm实现的建筑装修图纸管理平台(源码+文档)

项目简介 基于ssm实现的建筑装修图纸管理平台,主要功能如下: 技术栈 后端框框:spring/springmvc/mybatis 前端框架:html/JavaScript/Css/vue/elementui 运行环境:JDK1.8/MySQL5.7/idea(可选&#xff09…...

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07 目录 文章目录 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-07目录1. Evaluation of Large Language Models for Summarization Tasks in the Medical Domain: A Narrative Review摘要研究…...

Mahalanobis distance 马哈拉诺比斯距离

马哈拉诺比斯距离(Mahalanobis Distance)是一种衡量点与分布之间距离的度量,尤其适用于多维数据。与欧几里得距离不同,马哈拉诺比斯距离考虑了数据的协方差结构,因此在统计分析和异常值检测中非常有用。 定义 给定一…...

R语言绘制直方图

直方图是一种统计图表。它将数据分成若干区间,统计每个区间内数据的数量或频率,用矩形条高度表示。能直观展现数据分布特征,如集中趋势、离散程度等。在数据分析、质量控制、市场调研等领域广泛应用,可帮助人们快速了解数据整体形…...

论文阅读笔记-LogME: Practical Assessment of Pre-trained Models for Transfer Learning

前言 在NLP领域,预训练模型(准确的说应该是预训练语言模型)似乎已经成为各大任务必备的模块了,经常有看到文章称后BERT时代或后XXX时代,分析对比了许多主流模型的优缺点,这些相对而言有些停留在理论层面,可是有时候对于手上正在解决的任务,要用到预训练语言模型时,面…...

求二叉树的带权路径长度

二叉树的带权路径长度(WPL)是二叉树中所有叶结点的带权路径长度之和。给定一棵二叉树T,采用二叉链表存储。结点结构为: 其中叶结点的weight域保存该结点的非负权值。设root为指向T的根结点的指针,请设计求T的WPL的算法…...

Hive数仓操作(十五)

Hive 开窗函数 Hive窗口函数是一种特殊的函数,允许用户在查询中对一组行进行计算,而不仅仅是单独的行。窗口函数可以在 SQL 查询中进行聚合、排名、累积计算等。这使得窗口函数在数据分析和报告生成中非常有用。 窗口函数的基本组成部分 函数类型&…...

No.12 笔记 | 网络基础:ARP DNS TCP/IP与OSI模型

一、计算机网络:安全的基石 1. 网络的本质:数字世界的神经系统 定义:计算机的互联互通,实现资源共享和信息交换组成要素:发送者、接收者、介质、数据、协议(五大要素) 2. 网络架构&#xff1…...

OpenHarmony(鸿蒙南向开发)——轻量系统STM32F407芯片移植案例

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~ 持续更新中…… 介绍基于STM32F407IGT6芯片在拓维信息 Niobe407 开发板上移植OpenH…...

简单易懂的springboot整合Camunda 7工作流入门教程

简单易懂的Spring Boot整合Camunda7入门教程 因为关于Spring Boot结合Camunda7的教程在网上比较少,而且很多都写得有点乱,很多概念写得太散乱,讲解不清晰,导致看不懂,本人通过研究学习之后就写出了这篇教学文档。 介…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

CSS | transition 和 transform的用处和区别

省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

什么是VR全景技术

VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...

CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14

什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...