用PyTorch实现MNIST数据集手写数字识别
资源下载:用Pytorch实现MNIST数据集的手写数字识别介绍资源-CSDN文库
手写数字识别是一项相当普遍的应用,因为在现实生活中,我们经常需要对手写数字进行识别,例如在邮政服务中,我们需要对邮件上的邮政编码进行识别,而邮政编码就是由数字组成的。在金融领域中,我们也需要对手写数字进行识别,例如对支票进行自动识别。在医疗领域中,我们需要对手写数字进行识别,例如对医生的手写处方进行自动识别。因此,手写数字识别是一项非常实用的技术。
随着计算机视觉技术的快速发展,手写数字识别已经成为了计算机视觉领域中的重要研究方向之一。MNIST数据集是手写数字识别领域的经典数据集,它包含了大量的手写数字图像样本,可以用于训练和测试数字识别模型。MNIST数据集是一个包含60000个训练样本和10000个测试样本的数据集,每个样本是一个28x28的灰度图像,代表一个手写数字。
在本文中,我们将介绍如何使用PyTorch实现MNIST数据集的手写数字识别。我们将使用卷积神经网络(CNN)来训练模型,CNN是一种特别适合图像识别任务的神经网络。卷积神经网络是一种具有层级结构的神经网络,它可以自动提取图像中的特征并进行分类。我们将使用PyTorch的torchvision库来加载MNIST数据集,并将数据集划分为训练集和测试集。然后,我们将介绍如何在PyTorch中训练和测试卷积神经网络模型。
在本文中,我们还将简要介绍卷积神经网络的基本原理,包括卷积层、池化层和全连接层。我们将解释这些层是如何工作的,并给出实际的例子。我们还将介绍如何使用PyTorch来定义卷积神经网络模型,并详细解释每个组件的作用。此外,我们还将介绍如何使用PyTorch的自动微分功能来计算梯度,以便于我们进行模型的训练和优化。
最后,我们将提供完整的代码和详细的解释,以帮助读者理解和实现手写数字识别任务。无论您是初学者还是有经验的开发人员,都可以从本文中学到有用的知识和技巧,以帮助您更好地理解和应用计算机视觉技术。
手写数字识别是计算机视觉领域中的重要研究方向之一,它的应用范围非常广泛。在现实生活中,我们经常需要对手写数字进行识别,例如在邮政服务中,我们需要对邮件上的邮政编码进行识别,而邮政编码就是由数字组成的。在金融领域中,我们也需要对手写数字进行识别,例如对支票进行自动识别。在医疗领域中,我们需要对手写数字进行识别,例如对医生的手写处方进行自动识别。因此,手写数字识别是一项非常实用的技术。
MNIST数据集是手写数字识别领域的经典数据集之一,它包含了大量的手写数字图像样本,可以用于训练和测试数字识别模型。MNIST数据集是一个包含60000个训练样本和10000个测试样本的数据集,每个样本是一个28x28的灰度图像,代表一个手写数字。我们将使用PyTorch实现MNIST数据集的手写数字识别任务,并使用卷积神经网络(CNN)来训练模型。CNN是一种特别适合图像识别任务的神经网络,它可以自动提取图像中的特征并进行分类。
在本文中,我们将详细介绍如何使用PyTorch来实现MNIST数据集的手写数字识别任务。我们将从MNIST数据集的结构和特点开始,介绍如何使用PyTorch的torchvision库来加载MNIST数据集,并将数据集划分为训练集和测试集。然后,我们将介绍卷积神经网络的基本原理,包括卷积层、池化层和全连接层。我们将解释这些层是如何工作的,并给出实际的例子。
最后,我们将提供完整的代码和详细的解释,以帮助读者理解和实现手写数字识别任务。无论您是初学者还是有经验的开发人员,都可以从本文中学到有用的知识和技巧,以帮助您更好地理解和应用计算机视觉技术。
接下来,我们将详细介绍如何使用PyTorch来定义卷积神经网络模型,并训练和测试模型。我们将介绍如何使用PyTorch的自动微分功能来计算梯度,以便于我们进行模型的训练和优化。我们还将介绍如何使用PyTorch的可视化工具来分析模型的性能和特征,以帮助我们更好地理解和改进模型。
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms# Define the neural network architecture
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)self.fc1 = nn.Linear(7 * 7 * 64, 1024)self.fc2 = nn.Linear(1024, 10)def forward(self, x):x = nn.functional.relu(self.conv1(x))x = nn.functional.max_pool2d(x, 2)x = nn.functional.relu(self.conv2(x))x = nn.functional.max_pool2d(x, 2)x = x.view(-1, 7 * 7 * 64)x = nn.functional.relu(self.fc1(x))x = self.fc2(x)return nn.functional.log_softmax(x, dim=1)# Load the MNIST dataset
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# Create data loaders
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False)# Define the optimizer and loss function
net = Net()
optimizer = optim.Adam(net.parameters())
criterion = nn.CrossEntropyLoss()# Train the neural network
for epoch in range(10):for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = net(data)loss = criterion(output, target)loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))# Test the neural network
correct = 0
total = 0
with torch.no_grad():for data, target in test_loader:output = net(data)_, predicted = torch.max(output.data, 1)total += target.size(0)correct += (predicted == target).sum().item()
print('Accuracy: {:.2f}%'.format(100. * correct / total))
相关文章:
用PyTorch实现MNIST数据集手写数字识别
资源下载:用Pytorch实现MNIST数据集的手写数字识别介绍资源-CSDN文库 手写数字识别是一项相当普遍的应用,因为在现实生活中,我们经常需要对手写数字进行识别,例如在邮政服务中,我们需要对邮件上的邮政编码进行识别&am…...
leetcode3:无重复字符的最长子串
给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 示例 2: 输入: s “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串是 “…...
ChatGPT让现在的软件都土掉渣了
我们家有两个娃,每次我们想要出去时订个酒店时都好麻烦。我在某程上找,我先看有没有家庭房,但家庭房很少,而且有些家庭房实际上只能睡得下两大一小。普通房间能不能睡得下四个人,那可是得查看很多信息,如床…...
IU5708D低静态电流同步升压DC-DC 控制器
IU5708D是高性能宽输入范围 (4.5V~40V) 同步升压控制器,支持高达52V的输出电压。输出电压采用恒定频率电流模式脉宽调制(PWM) 控制来实现调节。 芯片通过外部定时电阻器或通过与外部时钟信号同步来设置开关频率。在电阻编程模式下,开关频率可从50KHz编程…...
ubuntu查看软件安装路径
ubuntu怎么查看软件安装位置在哪 - 服务器 - 亿速云 1、执行程序查看 在终端使用type执行软件程序查看。 type google-chrome 2、通过进程查看对应的软件程序 在终端使用以下命令查看所有进程名。 ps -e 再使用以下过滤命令查看对应的进程信息即可。 ps aux|grep 软件名 …...
动态规划总结
1,01背包dp(每件物品最多选一次): 因为背包为0 的时候,什么都装不了,所以为零 ,就是他们的最优解。 最后一个单元格为最后的答案。 01背包模板 public class Knapsack {public static int kn…...
分享:数据库存储与索引技术(一)存储模型与索引结构演变
欢迎访问 OceanBase 官网获取更多信息:https://www.oceanbase.com/ 本文来自OceanBase社区分享,仅限交流探讨。原作者马伟,长期从事互联网广告检索系统的研发,对数据库,编译器等领域也有浓厚兴趣。 文章目录综述传统单…...
ZeusAutoCode代码生成工具(开源)
ZeusAutoCode代码生成工具 一、简介 Zeus代码生成器是一款自动代码生成工具,旨在快速生成基础的CRUD代码,在此基础上也提供了一些高级功能,做到灵活配置,生成可扩展性强的代码。 后端是基于springboot、freemarker、mybatisplu…...
算法题记录
力扣的算法题:1154 给你一个字符串 date ,按 YYYY-MM-DD 格式表示一个 现行公元纪年法 日期。返回该日期是当年的第几天。 示例 1: 输入:date “2019-01-09” 输出:9 解释:给定日期是2019年的第九天。 示例…...
章节2 行走数据江湖,只需一行代码
目录6. 函数填充,计算列6.1 excel操作6.2 pandas操作16.3 pandas操作28. 数据筛选、过滤,[绘图前的必备功课]8.1 excel操作8.2 Python操作http://sa.mentorx.net 蔓藤教育6. 函数填充,计算列 书的编号、书的名字、标价、折扣、最终价钱 最终…...
springboot集成xx-job;
概念理解: xx-job是一个分布式任务调度平台。比如你有AB两个项目。 AB的定时任务就要在xx-job上个注册。同时AB要配置对应的依赖。 所以集成xx-job要分2步骤:第一步:先搭建xx-job服务 第二步,在A项目中导包并引用。 第一步&am…...
35岁,失业6个月终于接到降薪offer:有面就面,薪酬不限,随机应变说瞎话,对奇葩面试官保持礼貌克制,为拿offer什么都能忍...
被裁后为了生存,人需要做出什么改变?一位35岁网友在失业6个月后终于拿到offer,虽然降薪到四年前的水平,但能继续养家糊口,楼主已经很满意了,并分享了自己的个人经验:1.挖掘历史项目经验…...
如何有效管理项目进度 都有哪些解决方法
项目进度管理是确保项目按时完成的关键因素之一。如果一个项目不能按时完成,那么它可能会导致成本超支、客户不满意和失去信誉等问题。因此,有效的项目进度管理至关重要。在本文中,我们将探讨如何有效管理项目进度以及可以采取哪些解决方法。…...
互联网随想(三) 光纤与电路交换
光纤的 “纤”,读 xian(先),第一声,而不是 qian(千)。 光纤之于通信,就像半导体之于计算机。光纤突破了通信的电子瓶颈,就像半导体集成电路突破了计算机的电子管瓶颈一样。 但本文不是赞美光纤的,本文为反…...
electron之旅(二)react使用
首先使用react模板 我们这里使用的是vite和yarn yarn create vite #创建vite的react-js模板初始化依赖 yarn添加依赖 state(状态管理) yarn add redux react-reduxroutes(react路由) yarn add react-router-domelectron依赖 yarn add electron vite-plugin-electron cross-env…...
ChatGPT基础知识系列之Prompt
ChatGPT基础知识系列之Prompt 在 ChatGPT 中,用户可以输入任何问题或者话题,如天气、体育、新闻等等。系统将这个输入作为一个“提示”(prompt)输入到 GPT 模型中进行处理。GPT 模型会基于其学习到的语言规律和上下文知识,生成一个自然语言回答,并返回给用户。 例如,当…...
SpringBoot3 - Spring Security 6.0 Migration
Spring Security 6.0 Migration https://docs.spring.io/spring-security/reference/5.8/migration/servlet/config.html 最近在做SpringBoot2.x到3.0的升级。其中最主要的一部分是javax -> jakartapackageName的变更,另外一部分是对一些废弃/删除的类进行替换。…...
【新2023Q2模拟题JAVA】华为OD机试 - 最少停车数
最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南华为od机试,独家整理 已参加机试人员的实战技巧本篇题解:最少停车数 题目 特定大小的…...
《代码实例前端Vue》Security查询用户列表,用户新增
login.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>系统登录-超市订单管理系统</title><link rel"stylesheet" href"../css/style.css"><script type&qu…...
CANopenNode学习笔记(一)--- README翻译
CANopenNode学习笔记 文章目录CANopenNode学习笔记特性CANopen其他CANopenNode 流程图文件结构对象字典编辑器CANopenNode 是免费开源的CANopen协议栈。 CANopen是建立在CAN基础上的用于嵌入式控制系统的国际标准化(EN 50325-4) (CiA301)高层协议。有关CANopen的更多信息&#…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
JS红宝书笔记 - 3.3 变量
要定义变量,可以使用var操作符,后跟变量名 ES实现变量初始化,因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符,可以创建一个全局变量 如果需要定义…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...
