当前位置: 首页 > news >正文

机器学习:关联规则:Apriori算法、FP - Growth算法的原理、应用场景及优缺点介绍

一、关联规则算法概述

关联规则挖掘是数据挖掘中的一个重要任务,用于发现数据集中不同项之间的关联关系。

二、Apriori算法

  1. 原理

    • 频繁项集生成:Apriori算法基于一个先验原理,即如果一个项集是频繁的,那么它的所有子集也是频繁的;反之,如果一个项集是非频繁的,那么它的所有超集也是非频繁的。首先,扫描数据集,统计每个单项(1 - 项集)的出现次数,找出满足最小支持度阈值的频繁1 - 项集。然后,通过频繁 k − 1 k - 1 k1 - 项集来生成候选 k k k - 项集,再扫描数据集计算候选 k k k - 项集的支持度,筛选出频繁 k k k - 项集。这个过程不断迭代,直到不能生成新的频繁项集为止。
    • 关联规则生成:对于每个频繁项集 L L L,生成所有可能的非空子集。对于每个非空子集 A A A,计算关联规则 A ⇒ B A\Rightarrow B AB(其中 B = L − A B = L - A B=LA)的置信度,置信度计算公式为:
      C o n f i d e n c e ( A ⇒ B ) = S u p p o r t ( A ∪ B ) S u p p o r t ( A ) Confidence(A\Rightarrow B)=\frac{Support(A\cup B)}{Support(A)} Confidence(AB)=Support(A)Support(AB)
      只保留满足最小置信度阈值的关联规则。
  2. 应用场景

    • 超市购物篮分析。例如,分析顾客购买商品的行为,发现“购买牛奶和面包的顾客也经常购买鸡蛋”这样的关联规则,用于商品陈列优化和促销策略制定。
  3. 优点

    • 简单易懂,是关联规则挖掘的经典算法。原理和实现相对直观,容易理解和应用。
    • 能够有效地减少候选项集的数量。通过先验原理,避免了对大量不可能是频繁项集的候选项集进行计算,提高了效率。
  4. 缺点

    • 在生成频繁项集时需要多次扫描数据集。当数据集很大时,频繁的I/O操作会导致性能下降。
    • 可能会生成大量的候选项集,尤其是当最小支持度阈值设置较低时,计算和存储这些候选项集会消耗大量的资源。

三、FP - Growth算法

  1. 原理

    • 构建FP - Tree:FP - Growth(频繁模式增长)算法首先构建一棵FP - Tree(频繁模式树)。扫描数据集一次,统计每个项的出现频率,按照频率降序排列所有项。然后再次扫描数据集,将每个事务中的项按照排好的顺序插入FP - Tree中。在插入过程中,如果树中已经存在当前项的路径,则更新路径上节点的计数;否则,创建新的分支。
    • 挖掘频繁项集:从FP - Tree的头表(存储每个项及其出现次数和指向树中第一个相同项的指针)开始,通过递归的方式挖掘频繁项集。对于每个项,找到它在FP - Tree中的所有路径,根据路径构建条件模式基,然后从条件模式基构建条件FP - Tree,在条件FP - Tree上继续挖掘频繁项集。这个过程类似于FP - Tree的构建和挖掘,直到不能挖掘出新的频繁项集为止。
  2. 应用场景

    • 同样适用于购物篮分析,能够更高效地处理大规模数据集,挖掘商品之间的关联关系。例如在大型连锁超市的销售数据挖掘中,发现不同商品类别之间的关联。
  3. 优点

    • 只需要扫描数据集两次,相比Apriori算法大大减少了I/O开销。一次用于构建FP - Tree,另一次用于挖掘频繁项集(在挖掘过程中通过条件FP - Tree避免了对原始数据集的多次扫描)。
    • 对于挖掘长频繁模式和密集数据集更有效。它能够利用FP - Tree的结构,快速地找到频繁项集,不会像Apriori算法那样生成大量的候选项集。
  4. 缺点

    • 构建FP - Tree需要占用大量的内存空间,尤其是当数据集很大或者数据项很多时,内存消耗可能会成为瓶颈。
    • 算法实现相对复杂,理解和实现FP - Tree的构建和挖掘过程需要一定的技术难度。

四、Eclat算法

  1. 原理

    • Eclat算法基于集合的交集运算来挖掘频繁项集。它使用垂直数据表示,即将每个项的事务标识符(TID)列表存储起来。对于两个项集 A A A B B B,它们的交集的事务标识符列表就是同时包含 A A A B B B的事务集合。
    • 频繁项集的支持度计算方式为:
      S u p p o r t ( A ) = ∣ T I D ( A ) ∣ ∣ D ∣ Support(A)=\frac{|TID(A)|}{|D|} Support(A)=DTID(A)
      其中 T I D ( A ) TID(A) TID(A)是项集 A A A的事务标识符列表, ∣ D ∣ |D| D是数据集 D D D的事务总数。通过递归地计算项集的交集来生成频繁项集。从单个项开始,计算它们之间的交集和支持度,找到频繁1 - 项集。然后通过频繁 k − 1 k - 1 k1 - 项集之间的交集来生成候选 k k k - 项集,计算支持度,筛选出频繁 k k k - 项集,直到不能生成新的频繁项集为止。
  2. 应用场景

    • 在市场调查数据挖掘中,用于分析消费者对不同产品属性的组合偏好。例如,分析消费者对手机品牌、颜色、存储容量等属性组合的偏好,找出频繁出现的属性组合关联。
  3. 优点

    • 采用垂直数据表示和集合交集运算,在某些情况下可以更高效地计算频繁项集。特别是当数据集的事务长度较短或者支持度阈值较高时,能够快速地计算出频繁项集。
    • 可以方便地并行化计算。由于基于集合的交集运算,不同的项集之间的计算相对独立,可以利用并行计算资源来加速挖掘过程。
  4. 缺点

    • 当数据集的事务长度较长或者支持度阈值较低时,计算项集的交集会导致大量的中间结果,需要大量的存储空间和计算时间。
    • 对于稀疏数据集,性能可能会受到影响,因为需要处理大量的事务标识符列表和交集运算。

五、举例说明

假设我们有一个小型超市的购物篮数据集如下:

购物篮编号购买商品
1牛奶、面包、鸡蛋
2牛奶、面包
3面包、鸡蛋、果汁
4牛奶、鸡蛋
5牛奶、面包、果汁
  1. Apriori算法示例
    • 频繁项集生成
      • 首先计算1 - 项集的支持度,假设最小支持度阈值为 0.4 0.4 0.4。“牛奶”出现了4次,支持度为 4 5 = 0.8 \frac{4}{5}=0.8 54=0.8;“面包”出现了4次,支持度为 0.8 0.8 0.8;“鸡蛋”出现了3次,支持度为 0.6 0.6 0.6;“果汁”出现了2次,支持度为 0.4 0.4 0.4。所以频繁1 - 项集为{牛奶、面包、鸡蛋、果汁}。
      • 然后生成候选2 - 项集:{牛奶、面包},{牛奶、鸡蛋},{牛奶、果汁},{面包、鸡蛋},{面包、果汁},{鸡蛋、果汁}。计算它们的支持度,例如{牛奶、面包}出现了3次,支持度为 3 5 = 0.6 \frac{3}{5}=0.6 53=0.6。经过筛选,频繁2 - 项集为{牛奶、面包},{牛奶、鸡蛋},{面包、鸡蛋},{牛奶、果汁}。
      • 接着生成候选3 - 项集:{牛奶、面包、鸡蛋},{牛奶、面包、果汁},{牛奶、鸡蛋、果汁},{面包、鸡蛋、果汁}。计算支持度后,发现只有{牛奶、面包、鸡蛋}的支持度为 2 5 = 0.4 \frac{2}{5}=0.4 52=0.4满足阈值,是频繁3 - 项集。
    • 关联规则生成
      • 对于频繁3 - 项集{牛奶、面包、鸡蛋},生成非空子集:{牛奶},{面包},{鸡蛋},{牛奶、面包},{牛奶、鸡蛋},{面包、鸡蛋}。计算关联规则的置信度,例如对于规则{牛奶、面包} ⇒ \Rightarrow {鸡蛋},置信度为 S u p p o r t ( { 牛奶、面包、鸡蛋 } ) S u p p o r t ( { 牛奶、面包 } ) = 0.4 0.6 = 2 3 \frac{Support(\{牛奶、面包、鸡蛋\})}{Support(\{牛奶、面包\})}=\frac{0.4}{0.6}=\frac{2}{3} Support({牛奶、面包})Support({牛奶、面包、鸡蛋})=0.60.4=32。根据最小置信度阈值(假设为 0.6 0.6 0.6),保留满足条件的关联规则。
  2. FP - Growth算法示例
    • 构建FP - Tree
      • 首先统计每个项的出现次数,按照出现次数降序排列为:牛奶(4次)、面包(4次)、鸡蛋(3次)、果汁(2次)。
      • 构建FP - Tree,对于购物篮1(牛奶、面包、鸡蛋),先插入牛奶,然后在牛奶节点下插入面包,在面包节点下插入鸡蛋。以此类推,构建完整的FP - Tree。
    • 挖掘频繁项集
      • 从FP - Tree的头表开始,对于“果汁”,找到它在树中的路径,构建条件模式基,然后从条件模式基构建条件FP - Tree,挖掘包含“果汁”的频繁项集。同样地,对其他项进行挖掘,最终得到所有的频繁项集。
  3. Eclat算法示例
    • 垂直数据表示
      • 牛奶的TID列表为{1,2,4,5},面包的TID列表为{1,2,3,5},鸡蛋的TID列表为{1,3,4},果汁的TID列表为{3,5}。
    • 频繁项集生成
      • 计算1 - 项集的支持度,方法同Apriori算法。频繁1 - 项集为{牛奶、面包、鸡蛋、果汁}。
      • 计算2 - 项集的交集和支持度,例如牛奶和面包的交集TID列表为{1,2,5},支持度为 3 5 = 0.6 \frac{3}{5}=0.6 53=0.6。经过筛选得到频繁2 - 项集,然后继续生成3 - 项集并计算支持度,以此类推,挖掘出所有频繁项集。

相关文章:

机器学习:关联规则:Apriori算法、FP - Growth算法的原理、应用场景及优缺点介绍

一、关联规则算法概述 关联规则挖掘是数据挖掘中的一个重要任务,用于发现数据集中不同项之间的关联关系。 二、Apriori算法 原理 频繁项集生成:Apriori算法基于一个先验原理,即如果一个项集是频繁的,那么它的所有子集也是频繁的…...

从0开始深度学习(7)——线性回归的简洁实现

在从0开始深度学习(5)——线性回归的逐步实现中,我们手动编写了数据构造模块、损失函数模块、优化器等,但是在现代深度学习框架下,这些已经包装好了 本章展示如果利用深度学习框架简洁的实现线性回归 0 导入头文件 im…...

【网络安全 | Java代码审计】华夏ERP(jshERP)v2.3

未经许可,不得转载。 文章目录 技术框架开发环境代码审计权限校验绕过SQL注入Fastjson反序列化命令执行存储型XSS越权/未授权重置密码越权/未授权删除用户信息越权/未授权修改用户信息会话固定安全建议项目地址:https://github.com/jishenghua/jshERP 技术框架 核心框架:Sp…...

Setting the value of ‘*‘ exceeded the quota

H5之localStorage限额报错quota_exceeded the quota-CSDN博客 Uncaught DOMException: Failed to set a named property on Storage: Setting the value of background exceeded the quota. 超出了 localStorage 的最大长度。...

前端页面模块修改成可动态生成数据模块——大部分数据为GPT生成(仅供学习参考)

前端页面模块修改成可动态生成数据模块: 这些案例展示了如何通过Blade模板将前端页面模块变成可动态生成的模板。通过巧妙使用Blade语法、控制结构、CSS/JS分离、组件复用等技巧,可以大大提高代码的灵活性和复用性。在Laravel的Controller中准备好数据并…...

5.错误处理在存储过程中的重要性(5/10)

错误处理在存储过程中的重要性 引言 在数据库编程中,存储过程是一种重要的组件,它允许用户将一系列SQL语句封装成一个单元,以便重用和简化数据库操作。然而,像任何编程任务一样,存储过程中的代码可能会遇到错误或异常…...

【WebGis开发 - Cesium】如何确保Cesium场景加载完毕

目录 引言一、监听场景加载进度1. 基础代码2. 加工代码 二、进一步封装代码1. 已知存在的弊端2. 封装hooks函数 三、使用hooks方法1. 先看下效果2. 如何使用该hooks方法 三、总结 引言 本篇为Cesium开发的一些小技巧。 判断Cesium场景是否加载完毕这件事是非常有意义的。 加载…...

【数据结构】6道经典链表面试题

目录 1.返回倒数第K个节点【链接】 ​代码实现 2.链表的回文结构【链接】 代码实现 3.相交链表【链接】 代码实现 4.判断链表中是否有环【链接】 代码实现 常见问题解析 5.寻找环的入口点【链接】 代码实现1 ​代码实现2 6.随机链表的复制【链接】 代码实现 1.…...

等保测评1.0到2.0的演变发展

中国等保测评的演变 作为中国强化网络安全监管制度的重要组成部分,信息安全等级保护测评不是一个新概念,可以追溯到1994年和2007年发布的多项管理规则(通常称为等保测评 1.0规则),根据这些规则,网络运营商…...

yum 源配置

在/etc/yum.repo.d目录下 格式: [repository_name] nameRepository description baseurlhttp://repository_url enabled1 gpgcheck0 gpgkeyfile:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7 其中: [repository_name]:源的标识名称,…...

通过AI技术克服自动化测试难点(上)

本文我们一起分析一下AI技术如何解决现有的自动化测试工具的不足和我们衍生出来的新的测试需求。 首先我们一起看一下计算机视觉的发展历史,在上世纪70年代,处于技术萌芽期,由字符的识别技术慢慢进行演化,发展到现在,人…...

等保测评:如何建立有效的网络安全监测系统

等保测评中的网络安全监测系统建立 在建立等保测评中的网络安全监测系统时,应遵循以下步骤和策略: 确定安全等级和分类:首先,需要根据信息系统的安全性要求、资产的重要性和风险程度等因素,确定网络系统的安全等级&…...

yjs12——pandas缺失值的处理

1.缺失值的表示 正常来说,pandas缺失值是“nan”表示,但是有且文件可能自己改成了相应的别的符号 2.如何将缺失值符号改成nan xxx.replace(to_replace"...",valuenp.nan) 3.判断是否有缺失值 1.pd.notnull(xxx)————如果有缺失,…...

噪声分布 双峰,模拟函数 或者模拟方法 python人工智能 深度神经网络

在Python中模拟双峰分布,可以通过多种方法实现。以下是一些常用的方法: 1. **使用正态分布混合**: 可以通过组合两个正态分布来创建一个双峰分布。每个正态分布都有其自己的均值(mu)和标准差(sigma&…...

5个免费ppt模板网站推荐!轻松搞定职场ppt制作!

每次过完小长假,可以明显地感觉到,2024这一年很快又要结束了,不知此刻的你有何感想呢?是满载而归,还是准备着手制作年终总结ppt或年度汇报ppt呢? 每当说到制作ppt,很多人的第一反应&#xff0c…...

HTML5+Css3(背景属性background)

css背景属性 background 1. background-color背景颜色 背景颜色可以用“十六进制”、“rgb()”、“rgba()”或“英文单词”表示 2. background-image:url(路径);背景图片 也可以写成 background:url(); 3. background-repeat背景重复 属性值: - repeat:x,y平铺…...

高亚科技助力优巨新材,打造高效数字化研发项目管理平台

近日,中国企业管理软件资深服务商高亚科技与广东优巨先进新材料股份有限公司(以下简称“优巨新材”)正式签署合作协议,共同推进产品研发管理数字化升级。此次合作的主要目标是通过8Manage PM项目管理系统,提升优巨新材…...

用布尔表达式巧解数字电路图

1.前置知识 明确AND,OR,XOR,NOR,NOT运算的规则 参见:E25.【C语言】练习:修改二进制序列的指定位 这里再补充一个布尔运算符:NOR,即先进行OR运算,再进行NOT运算 如下图为其数字电路的符号 注意到在OR符号的基础上,在尾部加了一个(其实由简化而来) 附:NOR的真值表 2.R-S触发…...

面试--开源框架面试题集合

Spring 谈谈自己对于 Spring IoC 的了解什么是 IoC?IoC 解决了什么问题?什么是 Spring Bean?将一个类声明为 Bean 的注解有哪些?Component 和 Bean 的区别是什么?注入 Bean 的注解有哪些?Autowired 和 Resource 的区别是什么?…...

如何选择医疗器械管理系统?盘谷医疗符合最新版GSP要求

去年12月7日,新版《医疗器械经营质量管理规范》正式发布,并于今年7月1日正式实施。新版GSP第五十一条提出“经营第三类医疗器械的企业,应当具有符合医疗器械经营质量管理要求的计算机信息系统,保证经营的产品可追溯”,…...

shell 脚本批量更新本地git仓库

文章目录 一、问题概述二、解决方法三、运行效果1. windows2. centos 一、问题概述 你是否遇到这样的场景: 本地git仓库克隆了线上的多个项目,需要更新时,无法象svn一样,选中多个项目一起更新。 只能苦逼的一个个选中&#xff0c…...

Linux相关概念和易错知识点(12)(命令行参数、环境变量、本地变量)

1.命令行参数 (1)main函数的参数int argc和char* argv[]是什么? main函数可以带参数,即int main(int argc, char* argv[]),(int argc, char* argv[])叫做命令行参数列表,int argc叫参数的个数&a…...

wenserver中 一些常见的 错误码

EINTR 是 Linux 系统中定义的一个错误码,代表“被信号中断”。当一个系统调用在执行过程中被一个信号处理函数中断时,这个系统调用会立即返回错误,并且 errno 被设置为 EINTR。 举个例子 read函数是阻塞的 现在没有数据要读 我们read一直阻…...

【电路笔记】-求和运算放大器

求和运算放大器 文章目录 求和运算放大器1、概述2、反相求和放大器3、同相求和放大器4、减法放大器5、应用5.1 音频混合器5.2 数模转换器 (DAC)6、总结1、概述 在我们之前有关运算放大器的大部分文章中,仅将一个输入应用于反相或非反相运算放大器的输入。在本文中,将讨论一种…...

java实现桌面程序开机自启动

问题: 最近用java写一个桌面闹钟程序,需要实现开机自启动功能 解决办法: jna官网:https://github.com/java-native-access/jna?tabreadme-ov-file 使用jna库可以轻松实现 下载jna-5.15.0.jar和jna-platform-5.15.0.jar这两个库…...

Vuex 使用实例

文章目录 Vuex介绍使用步骤安装使用定义配置文件代码解释: 导入到 App.vue使用使用vuex Vuex 介绍 简单来说就是,多个组件需要共享一个data,原本只能通过父子组件来进行,但是vuex可以实现共享data 使用步骤 安装 npm install v…...

深度分离卷积

深度可分离卷积(Depthwise Separable Convolution)是一种高效的卷积操作,它将传统卷积操作分解为两个独立的步骤:深度卷积(Depthwise Convolution) 和 逐点卷积(Pointwise Convolution&#xff…...

JSONL 文件的检查和修订器

下面是一个JSONL 文件的检查和修订器,代码如下: import json import tkinter as tk from tkinter import filedialog, messageboxdef check_jsonl_file(input_file, log_file, output_file=None):errors = []valid_lines = []with open(input_file, r, encoding=utf-8) as in…...

输电线路悬垂线夹检测无人机航拍图像数据集,总共1600左右图片,悬垂线夹识别,标注为voc格式

输电线路悬垂线夹检测无人机航拍图像数据集,总共1600左右图片,悬垂线夹识别,标注为voc格式 输电线路悬垂线夹检测无人机航拍图像数据集介绍 数据集名称 输电线路悬垂线夹检测数据集 (Transmission Line Fittings Detection Dataset) 数据集…...

杭电合集小tips

刷HDU的题过程中&#xff0c;有一些值得注意的小问题&#xff0c;这里我踩坑之后记录下来&#xff0c;以便回顾与各位分享 一&#xff0c;关于语言的使用 主要大家还是用C和C多&#xff0c;但是注意的是&#xff0c;#include<bits/stdc.h>这个文件是G自带的&#xff0c…...