当前位置: 首页 > news >正文

数据结构之二叉搜索树(key模型与key_value模型)

二叉搜索树(key模型与key_value模型)

  • 1. ⼆叉搜索树的概念
  • 2. ⼆叉搜索树的性能分析
  • 3. ⼆叉搜索树的插⼊
  • 4. ⼆叉搜索树的查找
  • 5. ⼆叉搜索树的删除
  • 6. ⼆叉搜索树的实现代码
  • 7. ⼆叉搜索树key和key/value使⽤场景
    • 7.1 key搜索场景:
    • 7.2 key/value搜索场景:
    • 7.3 key/value⼆叉搜索树代码实现
  • 8、运用于实际的key_value

今天我来介绍的是二叉搜索树,这一块我希望大家如果有不会的地方下来好好理解,这一节课与下一节的set/map关联挺大的。

1. ⼆叉搜索树的概念

⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:

–• 若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值

–• 若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值

–• 它的左右⼦树也分别为⼆叉搜索树

–• ⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等值,multimap/multiset⽀持插⼊相等值.(multimap/multiset)这一块我们下一节介绍,今天我主要介绍的是不允许冗余的情况

在这里插入图片描述

2. ⼆叉搜索树的性能分析

最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全⼆叉树),其⾼度为: O(log2 N)
最差情况下,⼆叉搜索树退化为单⽀树(或者类似单⽀),其⾼度为: O( N/2)
所以综合⽽⾔⼆叉搜索树增删查改时间复杂度为: O(N)

那么这样的效率显然是⽆法满⾜我们需求的,我们后续课程需要继续讲解⼆叉搜索树的变形,平衡⼆叉搜索树AVL树和红⿊树,才能适⽤于我们在内存中存储和搜索数据。

另外需要说明的是,⼆分查找也可以实现 O(logN) 级别的查找效率,但是⼆分查找有两⼤缺陷:

  1. 需要存储在⽀持下标随机访问的结构中,并且有序。
  2. 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插⼊和删除数据⼀般需要挪动数据

这⾥也就体现出了平衡⼆叉搜索树的价值。

在这里插入图片描述

3. ⼆叉搜索树的插⼊

以上的基本知识我们学习完后就来看一下二叉树的插入。

1、树为空,我们直接将第一个插入的节点作为根节点即可。
2、数不为空,按⼆叉搜索树性质,插⼊值⽐当前结点⼤往右⾛,插⼊值⽐当前结点⼩往左⾛,找到空位置,插⼊新结点。

3. 如果⽀持插⼊相等的值,插⼊值跟当前结点相等的值可以往右⾛,也可以往左⾛,找到空位置,插⼊新结点。(要注意的是要保持逻辑⼀致性,插⼊相等的值不要⼀会往右⾛,⼀会往左⾛)(这里我建议向左走,后序我们会学习平衡的概念,这棵树失衡的情况下,右节点会跑到左边)

这里我们可以按照之前学习二叉树时,二叉树的构建一样采用递归来插入,但这里有个简单的方式那就是循环,我们直接比较当前节点的值与插入的值的大小,如果小于就走左,大于就走右,等于直接就返回false(这里我只写不允许冗余,大家下来可以考虑有冗余的情况),如果当前节点走到空了,那这个位置就是我们需要插入的位置。

节点类:

template<class k>//k就是我们的key
struct BSTNode
{k _key;BSTNode<k>* _left;BSTNode<k>* _right;BSTNode(const k& x) :_key(x), _left(nullptr), _right(nullptr) {}//构造
};
//节点

插入部分:

bool insert(const k& x)
{if (_root == nullptr){_root = new Node(x);}//根节点为空Node* parent = nullptr;Node* cur = _root;while (cur){if (x < cur->_key){parent = cur;cur = cur->_left;}else if (x > cur->_key){parent = cur;cur = cur->_right;}elsereturn false;}//找到该插入的位置,为curcur = new Node(x);//找到以后还需要判断它插入在父节点哪一边if (x < parent->_key){parent->_left = cur;}else{parent->_right = cur;}return 0;
}

这里是需要引入cur(当前节点)的parent(父亲指针)的,因为我们要插入节点,需要将插入的节点与整棵树链接。

这一块写完不好测试对吧,因为调试窗口只能看到节点插入与否,那我们写一个中序遍历,首先搜索二叉树永远是一个左小于根,根小于右的结构,中序遍历一定是一个递增的数列,这一块要是不知道的建议去其他地方找视频看,文字不好演示,这里就不做演示了。

void _inorder(const Node* root)
{if (root == nullptr)return;_inorder(root->_left);cout << root->_key << ' ';_inorder(root->_right);}

这就是中序的代码,但是我们可以看到,要调用这个函数必须要传一个节点指针,二叉树的私有成员就是我们的_root指针,我们能在外部访问我们的根再传入吗?
为了不破坏类的封装,这里有两种方式解决:
1、getroot函数,提供访问根节点的指针。
2、再写一个共有的调用_inorder的函数,类外部不能访问,类内部是可以访问的。

void inorder()
{_inorder(_root);cout << endl;
}

这样就搞定了。

那现在我们来测试一下:
在这里插入图片描述
这里的key模型担任的工作是不是可以有去重加排序啊。

4. ⼆叉搜索树的查找

  1. 从根开始⽐较,查找x,x⽐根的值⼤则往右边⾛查找,x⽐根值⼩则往左边⾛查找。
  2. 最多查找⾼度次,⾛到到空,还没找到,这个值不存在。
  3. 如果不⽀持插⼊相等的值,找到x即可返回
  4. 如果⽀持插⼊相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。如下图,查找3,要找到1的右孩⼦的那个3返回

在这里插入图片描述
写完插入写查找是不是就太简单了啊

Node* find(const k& x)
{Node* cur = _root;while (cur){if (x < cur->_key)cur = cur->_left;else if (x > cur->_key)cur = cur->_right;elsereturn cur;}return nullptr;
}

这里我们就不需要parent了,因为我们只是查找当前节点在不在,跟父节点没有半毛钱关系对吧。

5. ⼆叉搜索树的删除

⾸先查找元素是否在⼆叉搜索树中,如果不存在,则返回false。

如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)

  1. 要删除结点N左右孩⼦均为空
  2. 要删除的结点N左孩⼦位空,右孩⼦结点不为空
  3. 要删除的结点N右孩⼦位空,左孩⼦结点不为空
  4. 要删除的结点N左右孩⼦结点均不为空

对应以上四种情况的解决⽅案:
5. 把N结点的⽗亲对应孩⼦指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是⼀样的)
6. 把N结点的⽗亲对应孩⼦指针指向N的右孩⼦,直接删除N结点
7. 把N结点的⽗亲对应孩⼦指针指向N的左孩⼦,直接删除N结点
8. ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。
在这里插入图片描述
这是第一种与第二种情况。

第三种情况较为复杂一点:
在这里插入图片描述

bool erase(const k& x)
{Node* parent = nullptr;Node* cur = _root;while (cur){if (x < cur->_key){parent = cur;cur = cur->_left;}else if (x > cur->_key){parent = cur;cur = cur->_right;}else//找到当前位置{if (cur->_left == nullptr)//左为空{if (_root == cur)//特殊情况,当cur为空,且左为空,就将根移动{_root = cur->_right;}else{if (cur == parent->_left)parent->_left = cur->_right;elseparent->_right = cur->_right;}delete cur;}else if (cur->_right == nullptr)//右为空{if (_root == cur)//同上{_root = cur->_left;}else{if (cur == parent->_left)parent->_left = cur->_left;elseparent->_right = cur->_left;}delete cur;}else//双边节点{Node* replaceparent = cur;Node* replace = cur->_right;while (replace->_left){replaceparent = replace;replace = replace->_left;}cur->_key = replace->_key;//replace的左边一定没有节点了if (replace == replaceparent->_left)replaceparent->_left = replace;elsereplaceparent->_right = replace;delete replace;}return true;}}return false;
}

6. ⼆叉搜索树的实现代码

#include<iostream>
using namespace std;namespace key
{template<class k>struct BSTNode{k _key;BSTNode<k>* _left;BSTNode<k>* _right;BSTNode(const k& x) :_key(x), _left(nullptr), _right(nullptr) {}};//节点template<class k>class BSTree{typedef BSTNode<k> Node;public:BSTree() = default;//强制生成构造BSTree(const BSTree& t){_root = copy(t._root);}//拷贝构造,这块比较简单,如果实在不懂的话私聊我BSTree& operator=(BSTree t){swap(_root, t._root);return *this;}//赋值构造~BSTree(){destroy(_root);_root = nullptr;}//析构采用一个后序遍历即可bool insert(const k& x){if (_root == nullptr){_root = new Node(x);}//根节点为空Node* parent = nullptr;Node* cur = _root;while (cur){if (x < cur->_key){parent = cur;cur = cur->_left;}else if (x > cur->_key){parent = cur;cur = cur->_right;}elsereturn false;}//找到该插入的位置,为curcur = new Node(x);if (x < parent->_key){parent->_left = cur;}else{parent->_right = cur;}return 0;}void inorder(){_inorder(_root);cout << endl;}bool erase(const k& x){Node* parent = nullptr;Node* cur = _root;while (cur){if (x < cur->_key){parent = cur;cur = cur->_left;}else if (x > cur->_key){parent = cur;cur = cur->_right;}else//找到当前位置{if (cur->_left == nullptr){if (_root == cur){_root = cur->_right;}else{if (cur == parent->_left)parent->_left = cur->_right;elseparent->_right = cur->_right;}delete cur;}else if (cur->_right == nullptr){if (_root == cur){_root = cur->_left;}else{if (cur == parent->_left)parent->_left = cur->_left;elseparent->_right = cur->_left;}delete cur;}else//双边节点{Node* replaceparent = cur;Node* replace = cur->_right;while (replace->_left){replaceparent = replace;replace = replace->_left;}cur->_key = replace->_key;//replace的左边一定没有节点了if (replace == replaceparent->_left)replaceparent->_left = replace;elsereplaceparent->_right = replace;delete replace;}return true;}}return false;}Node* find(const k& x){Node* cur = _root;while (cur){if (x < cur->_key)cur = cur->_left;else if (x > cur->_key)cur = cur->_right;elsereturn cur;}return nullptr;}private:void _inorder(const Node* root){if (root == nullptr)return;_inorder(root->_left);cout << root->_key << ' ';_inorder(root->_right);}void destroy(Node* root){if (root == nullptr)return;destroy(root->_left);destroy(root->_right);delete root;}Node* copy(Node* root){if (root == nullptr)return nullptr;Node* r = new Node(root->_key);r->_left = copy(root->_left);r->_right = copy(root->_right);return r;}Node* _root = nullptr;};
}

这份代码是key的模型,什么是key_value呢?就是每个节点存储两个值,key跟上面写的一样作为插入删除等等的基准,value想存啥就存啥。

7. ⼆叉搜索树key和key/value使⽤场景

7.1 key搜索场景:

只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值,搜索场景只需要判断key在不在。key的搜索场景实现的⼆叉树搜索树⽀持增删查,但是不⽀持修改,修改key破坏搜索树结构了。

场景1:⼩区⽆⼈值守⻋库,⼩区⻋库买了⻋位的业主⻋才能进⼩区,那么物业会把买了⻋位的业主的⻋牌号录⼊后台系统,⻋辆进⼊时扫描⻋牌在不在系统中,在则抬杆,不在则提⽰⾮本⼩区⻋辆,⽆法进⼊。

场景2:检查⼀篇英⽂⽂章单词拼写是否正确,将词库中所有单词放⼊⼆叉搜索树,读取⽂章中的单词,查找是否在⼆叉搜索树中,不在则波浪线标红提⽰。

7.2 key/value搜索场景:

每⼀个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修改key破坏搜索树结构了,可以修改value。

场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中⽂),搜索时输⼊英⽂,则同时查找到了英⽂对应的中⽂。

场景2:商场⽆⼈值守⻋库,⼊⼝进场时扫描⻋牌,记录⻋牌和⼊场时间,出⼝离场时,扫描⻋牌,查找⼊场时间,⽤当前时间-⼊场时间计算出停⻋时⻓,计算出停⻋费⽤,缴费后抬杆,⻋辆离场。

场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第⼀次出现,(单词,1),单词存在,则++单词对应的次数。

7.3 key/value⼆叉搜索树代码实现

这里只需要增加一个模版参数即可

namespace key_value
{template<class k,class v>struct BSTNode{k _key;v _value;BSTNode<k,v>* _left;BSTNode<k,v>* _right;BSTNode(const k& x,const v& y) :_key(x), _value(y), _left(nullptr), _right(nullptr) {}};//节点template<class k,class v>class BSTree{typedef BSTNode<k,v> Node;public:BSTree() = default;//强制生成构造BSTree(const BSTree& t){_root = copy(t._root);}BSTree& operator=(BSTree t){swap(_root, t._root);return *this;}~BSTree(){destroy(_root);_root = nullptr;}bool insert(const k& x,const v& y){if (_root == nullptr){_root = new Node(x, y);}//根节点为空Node* parent = nullptr;Node* cur = _root;while (cur){if (x < cur->_key){parent = cur;cur = cur->_left;}else if (x > cur->_key){parent = cur;cur = cur->_right;}elsereturn false;}//找到该插入的位置,为curcur = new Node(x,y);if (x < parent->_key){parent->_left = cur;}else{parent->_right = cur;}return 0;}void inorder(){_inorder(_root);cout << endl;}bool erase(const k& x){Node* parent = nullptr;Node* cur = _root;while (cur){if (x < cur->_key){parent = cur;cur = cur->_left;}else if (x > cur->_key){parent = cur;cur = cur->_right;}else//找到当前位置{if (cur->_left == nullptr){if (_root == cur){_root = cur->_right;}else{if (cur == parent->_left)parent->_left = cur->_right;elseparent->_right = cur->_right;}delete cur;}else if (cur->_right == nullptr){if (_root == cur){_root = cur->_left;}else{if (cur == parent->_left)parent->_left = cur->_left;elseparent->_right = cur->_left;}delete cur;}else//双边节点{Node* replaceparent = cur;Node* replace = cur->_right;while (replace->_left){replaceparent = replace;replace = replace->_left;}cur->_key = replace->_key;//replace的左边一定没有节点了if (replace == replaceparent->_left)replaceparent->_left = replace;elsereplaceparent->_right = replace;delete replace;}return true;}}return false;}Node* find(const k& x){Node* cur = _root;while (cur){if (x < cur->_key)cur = cur->_left;else if (x > cur->_key)cur = cur->_right;elsereturn cur;}return nullptr;}private:void _inorder(const Node* root){if (root == nullptr)return;_inorder(root->_left);cout << root->_key << "->" << root->_value << endl;_inorder(root->_right);}void destroy(Node* root){if (root == nullptr)return;destroy(root->_left);destroy(root->_right);delete root;}Node* copy(Node* root){if (root == nullptr)return nullptr;Node* r = new Node(root->_key,root->_value);r->_left = copy(root->_left);r->_right = copy(root->_right);return r;}Node* _root = nullptr;};
}

8、运用于实际的key_value

void test4()
{string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜","苹果", "香蕉", "苹果", "香蕉" };key_value::BSTree<string, int> countTree;for (const auto& str : arr){// 先查找水果在不在搜索树中// 1、不在,说明水果第一次出现,则插入<水果, 1>// 2、在,则查找到的结点中水果对应的次数++//BSTreeNode<string, int>* ret = countTree.Find(str);auto ret = countTree.find(str);if (ret == nullptr){countTree.insert(str, 1);}else{// 修改valueret->_value++;}}countTree.inorder();key_value::BSTree<string, int> copy = countTree;copy.inorder();}

在这里插入图片描述

相关文章:

数据结构之二叉搜索树(key模型与key_value模型)

二叉搜索树&#xff08;key模型与key_value模型&#xff09; 1. ⼆叉搜索树的概念2. ⼆叉搜索树的性能分析3. ⼆叉搜索树的插⼊4. ⼆叉搜索树的查找5. ⼆叉搜索树的删除6. ⼆叉搜索树的实现代码7. ⼆叉搜索树key和key/value使⽤场景7.1 key搜索场景&#xff1a;7.2 key/value搜…...

图说几何学2300年重大错误:附着在直线z上的直线段必是z的一部分

黄小宁 用泡沫塑料和油漆制成的铅球与真正的铅球&#xff0c;两者有不同的内部形状。同样&#xff0c;数学有长度相同但内部形状不同的伪≌直线段。 几何学有史2300年来一直认定附着在直线z上的直线段一定是z的一部分。其实这是2300年肉眼直观错觉——百年病态集论的症结。 …...

汽车网关(GW)技术分析

一、引言 在现代汽车电子系统中&#xff0c;汽车网关&#xff08;Gateway&#xff0c;简称 GW&#xff09;扮演着至关重要的角色。随着汽车电子技术的不断发展&#xff0c;汽车内部的电子控制单元&#xff08;Electronic Control Unit&#xff0c;简称 ECU&#xff09;数量不断…...

Telnet命令详解:安装、用法及应用场景解析

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storm…...

C++之LIST模拟实现(代码纯享版)

目录 文章目录 前言 一、代码 总结 前言 本文主要展示了模拟List的代码实现 一、代码 #pragma once #include<iostream> #include<assert.h> using namespace std; namespace zlh {template<class T>struct list_node{T _data;list_node<T>* _next;l…...

华为OD机试 - 括号匹配 - 栈(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…...

打破欧美10年芯片垄断,杨振宁教授关门弟子,仅用三年创造奇迹

有这么一位超级厉害的中国人&#xff0c;硬是把欧美那边垄断了十年的芯片技术给“撬”开了&#xff01;说起来&#xff0c;这才是我们该追的真正明星啊&#xff01;那么&#xff0c;这位大神到底是谁&#xff1f;又是怎么让欧美芯片圈儿里的人听到她的名字就心里发怵的呢&#…...

OpenCV视频I/O(20)视频写入类VideoWriter之用于将图像帧写入视频文件函数write()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::VideoWriter::write() 函数用于将图像帧写入视频文件。 该函数/方法将指定的图像写入视频文件。图像的大小必须与打开视频编写器时指定的大…...

音视频入门基础:FLV专题(14)——FFmpeg源码中,解码Script Tag的实现

一、引言 在《音视频入门基础&#xff1a;FLV专题&#xff08;9&#xff09;——Script Tag简介》中对Script Tag进行了简介&#xff0c;本文讲述FFmpeg源码中是怎样解码FLV文件的Script Tag&#xff0c;拿到里面的信息。 二、flv_read_packet函数 从《音视频入门基础&#x…...

小猿口算APP脚本(协议版)

小猿口算是一款专注于数学学习的教育应用,主要面向小学阶段的学生。它提供多种数学练习和测试,包括口算、速算、应用题等。通过智能化的题目生成和实时批改功能,帮助学生提高数学计算能力。此外,它还提供详细的学习报告和分析,帮助家长和教师了解学生的学习进度和薄弱环节…...

【长文梳理webserver核心】核心类篇

前言 有三个核心组件支撑一个reactor实现 [持续] 的 [监听] 一组fd&#xff0c;并根据每个fd上发生的事件 [调用] 相应的处理函数。这三个组件就是 EventLoop 、Channel 以及 Poller 三个类&#xff0c;其中 EventLoop 可以看作是对业务线程的封装&#xff0c;而 Channel 可以看…...

[实用工具]Docker安装nextcloud实现私有云服务和onlyoffice

Nextcloud是一款开源的云存储和协作平台&#xff0c;允许用户在自己的服务器上存储和访问文件&#xff0c;同时提供强大的协作工具。它可以替代商业云存储服务&#xff0c;让用户拥有完全控制和自主管理自己的数据。 Nextcloud支持文件上传和下载&#xff0c;可以通过Web界面、…...

基于STM32设计的生猪健康检测管理系统(NBIOT+OneNet)(240)

文章目录 一、前言1.1 项目介绍【1】项目开发背景【2】设计实现的功能【3】项目硬件模块组成1.2 设计思路1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献【4】项目背景【5】摘要1.4 开发工具的选择【1】设备端开发【2】上位机开发1.5 系统功能总结1.6 系统框架图…...

springboot kafka多数据源,通过配置动态加载发送者和消费者

前言 最近做项目&#xff0c;需要支持kafka多数据源&#xff0c;实际上我们也可以通过代码固定写死多套kafka集群逻辑&#xff0c;但是如果需要不修改代码扩展呢&#xff0c;因为kafka本身不处理额外逻辑&#xff0c;只是起到削峰&#xff0c;和数据的传递&#xff0c;那么就需…...

【华为】基于华为交换机的VLAN配置与不同VLAN间通信实现

划分VLAN&#xff08;虚拟局域网&#xff09;主要作用&#xff1a; 一、提高网络安全性 广播域隔离访问控制增强 二、优化网络性能 减少网络拥塞提高网络可管理性 sysytem-view #进入系统视图配置参数 vlan batch 10 20 #批量创建vlan LSW3: int g0/0/1 port…...

力扣题11~20

题11&#xff08;中等&#xff09;&#xff1a; 思路&#xff1a; 这种题目第一眼就是双循环&#xff0c;但是肯定不行滴&#xff0c;o(n^2)这种肯定超时&#xff0c;很难接受。 所以要另辟蹊径&#xff0c;我们先用俩指针&#xff08;标志位&#xff09;在最左端和最右端&am…...

更美观的HTTP性能监测工具:httpstat

reorx/httpstat是一个旨在提供更美观和详细HTTP请求统计信息的cURL命令行工具&#xff0c;它能够帮助开发者和运维人员深入理解HTTP请求的性能和状态。 1. 基本概述 项目地址&#xff1a;https://github.com/reorx/httpstat语言&#xff1a;该工具主要是以Python编写&#xff…...

在2024 VDC,听一曲“蓝心智能”的江河协奏

作为科技从业者&#xff0c;我们每年参加的终端产品发布会和开发者大会&#xff0c;少则几十场。说每一场都别有新意&#xff0c;那自然是不可能的&#xff0c;但每次去vivo的活动现场&#xff0c;总能给我耳目一新的感觉。 雨果说过&#xff0c;音乐可以表达难以用语言描述&am…...

Python编写的数字光刻仿真程序,使用了Hopkins光刻模型和粒子群优化(PSO)算法来优化掩模设计

Python编写的数字光刻仿真程序,使用了Hopkins光刻模型和粒子群优化(PSO)算法来优化掩模设计,以减少光刻过程中的图形偏差。 4. 定义了几个函数来模拟光波通过光刻系统的变化: - `transfer_function`:计算光波的相位变化。 - `light_source_function`:描述光源在各…...

【AD那些事 11】绘制PCB板时“隔离” 的那些事(笔记摘抄)

在设计新板子时发现需要考虑隔离&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;于是我在网上找了很多资料&#xff0c;摘抄了一些&#xff0c;整理了一下&#xff0c;作为笔记&#…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...