当前位置: 首页 > news >正文

leetcode-10/9【堆相关】

1.数组中的第K个最大元素【215】

思路:
        1.1.要使得时间复杂度为O(n),自己实现大顶堆,通过K次调整,顶部元素就是想要的第K个最大元素

        1.2.实现大顶堆的过程中,先建堆,建堆是利用递归,本质上是从下到上地进行大顶堆的调整,因为如果从上到下,只能实现局部的大顶堆,有可能会漏掉一些元素没调整

        1.3.叶子节点本身就满足大顶堆的性质,所以不需要调整,只需要从倒数第2排进行调整即可,即heapSize / 2 - 1

        1.4.对于某个堆进行调整的时候,判断左子树2 * i + 1,右子树 2 * i + 2,和根节点i,如果左右子树有比i的值大的,取更大的作为largest最大节点,与根节点进行交换,并且递归地调整largest位置的子树符合大顶堆的性质。注意!!交换的只是值,但是largest索引没变,其子树还是原来位置的子树

2. 前K个高频元素

思路:
        2.1. 先用哈希表对元素以及元素出现的次数进行存储,之后对value即出现次数进行排序即可

        2.2.要求算法时间复杂度优于O(nlogn),我采用堆排序,利用PriorityQueue优先队列,定义排序器规则,实现小顶堆。由此,最小的元素在队列首部

        2.3.取前K个高频元素,因此优先队列实现的堆的大小为K即可

        2.4.有新的元素来的时候,如果大小小于K,就直接进入队列;否则,如果小顶堆顶部元素小于新的元素,则将顶部元素弹出,新元素进入队列。且PriorityQueue会自动按照排序器规则调整小顶堆

相关文章:

leetcode-10/9【堆相关】

1.数组中的第K个最大元素【215】 思路: 1.1.要使得时间复杂度为O(n),自己实现大顶堆,通过K次调整,顶部元素就是想要的第K个最大元素 1.2.实现大顶堆的过程中,先建堆,建堆是利用递归,本…...

自然语言处理问答系统:技术进展、应用与挑战

自然语言处理问答系统:技术进展、应用与挑战 自然语言处理(NLP)作为人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。问答系统(Q&A System),作为NLP的一个重要应用&#…...

向量数据库!AI 时代的变革者还是泡沫?

向量数据库!AI 时代的变革者还是泡沫? 前言一、向量数据库的基本概念和原理二、向量数据库在AI中的应用场景三、向量数据库的优势和挑战四、向量数据库的发展现状和未来趋势五、向量数据库对AI发展的影响 前言 数据是 AI 的核心,而向量则是数…...

vue中css作用域及深度作用选择器的用法

Vue中有作用域的CSS 当< style>标签有scoped属性时&#xff0c;它的css只作用于当前组建中的元素。vue2和vue3均有此用法&#xff1b; 当使用scoped后&#xff0c;父组件的样式将不会渗透到子组件中。不过一个子组件的根节点会同时受父组件有作用域的css和子组件有作用…...

LLM - 使用 ModelScope SWIFT 测试 Qwen2-VL 的 LoRA 指令微调 教程(2)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/142827217 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 SWIFT …...

2024 年热门前端框架对比及选择指南

在前端开发的世界里&#xff0c;框架的选择对于项目的成功至关重要。不同的框架有着不同的设计理念、生态系统和适用场景&#xff0c;因此&#xff0c;开发者在选框架时需要权衡多个因素。本文将对当前最流行的前端框架——React、Vue、Angular、Svelte 和 Solid——进行详细对…...

map_server

地图格式 此软件包中的工具处理的地图以两个文件的形式存储。YAML 文件描述地图的元数据&#xff0c;并命名图像文件。图像文件编码了占用数据。 图像格式 图像文件描述世界中每个单元格的占用状态&#xff0c;并使用相应像素的颜色表示。在标准配置中&#xff0c;较白的像素…...

无人机航拍视频帧处理与图像拼接算法

无人机航拍视频帧处理与图像拼接算法 1. 视频帧截取与缩放 在图像预处理阶段,算法首先逐帧地从视频中提取出各个帧。 对于每一帧图像,算法会执行缩放操作,以确保所有帧都具有一致的尺寸,便于后续处理。 2. 图像配准 在图像配准阶段,算法采用SIFT(尺度不变特征变换)算…...

搬砖11、Python 文件和异常

文件和异常 实际开发中常常会遇到对数据进行持久化操作的场景&#xff0c;而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词&#xff0c;可能需要先科普一下关于文件系统的知识&#xff0c;但是这里我们并不浪费笔墨介绍这个概念&#xff0c;请大…...

24.6 监控系统在采集侧对接运维平台

本节重点介绍 : 监控系统在采集侧对接运维平台 服务树充当监控系统的上游数据提供者在运维平台上 可以配置采集任务 exporter改造成探针型将给exporter传参和修改prometheus scrape配置等操作页面化 监控系统在采集侧对接运维平台 服务树充当监控系统的上游数据提供者在运…...

refresh-1

如果设置了刷新标志&#xff08;refreshFlag&#xff09;&#xff1a; - 如果CAT&#xff08;配置文件管理代理&#xff09;未初始化&#xff0c;eUICC应返回一个错误代码commandError。 - 对于MEP-A2&#xff0c;eUICC可以返回一个错误代码commandError。 - 如果目标端口上正…...

如何写好一篇计算机应用的论文?

计算机应用是一个广泛的领域&#xff0c;涵盖了从软件开发到数据分析、人工智能、网络安全等多个方向。选择一个合适的毕业设计题目&#xff0c;不仅要考虑个人兴趣和专业技能&#xff0c;还要考虑项目的可行性、创新性以及对未来职业发展的帮助。以下是一些建议&#xff0c;帮…...

工业 5.0 时代的数字孪生:迈向高效和可持续的智能工厂

数字孪生&#xff08;物理机器或流程的虚拟代表&#xff09;正在彻底改变工业物联网和流程监控。这项新兴技术可实现实时模拟&#xff0c;提高效率、可持续性并降低成本。航空航天和汽车等行业已经从这些创新系统中获益匪浅 数字孪生是数字模拟器的演变&#xff0c;因此&#x…...

Python脚本之获取Splunk数据发送到第三方UDP端口

原文地址&#xff1a;https://www.program-park.top/2024/10/12/python_21/ 在 Linux 环境执行脚本&#xff0c;Python需要引入对应依赖&#xff1a; pip install splunk-sdk离线环境下&#xff0c;可手动执行python进入 Python 解释器的交互式界面&#xff0c;输入以下命令&a…...

Protobuf:复杂类型接口

Protobuf&#xff1a;复杂类型接口 package字段规则复杂类型enumAnyoneofmap 本博客基于proto3语法&#xff0c;讲解protobuf中的复杂类型。 package 在.proto文件中&#xff0c;支持导入其它.proto文件的内容&#xff0c;例如&#xff1a; test.proto&#xff1a; syntax …...

Git Push 深度解析:命令的区别与实践

目录 命令一&#xff1a;git push origin <branch-name>命令二&#xff1a;git push Factory_sound_detection_tool test工作流程&#xff1a;两者的主要区别实践中的应用总结 Git 是一种分布式版本控制系统&#xff0c;它允许用户对代码进行版本管理。在 Git 中&#xf…...

大数据开发基础实训室设备

大数据实验实训一体机 大数据实验教学一体机是一种专为大数据教育设计的软硬件融合产品&#xff0c;其基于华为机架服务器进行了调优设计&#xff0c;从而提供了卓越的性能和稳定性。这一产品将企业级虚拟化管理系统与实验实训教学信息化平台内置于一体&#xff0c;通过软硬件…...

【数据结构】string(C++模拟实现)

string构造 string::string(const char* str):_size(strlen(str)) {_str new char[_size 1];_capacity _size;strcpy(_str, str); }// s2(s1) string::string(const string& s) {_str new char[s._capacity 1];strcpy(_str, s._str);_size s._size;_capacity s._cap…...

【笔记】I/O总结王道强化视频笔记

文章目录 从中断控制器的角度来理解整个中断处理的过程复习 处理器的中断处理机制**中断驱动I/O方式** printf——从系统调用到I/O控制方式的具体实现1轮询方式下输出一个字符串(程序查询)中断驱动方式下输出一个字符串中断服务程序中断服务程序与设备驱动程序之间的关系 DMA方…...

XML XSLT:转换与呈现数据的力量

XML XSLT:转换与呈现数据的力量 XML(可扩展标记语言)和XSLT(XML样式表转换语言)是现代信息技术中不可或缺的工具,它们在数据交换、存储和呈现方面发挥着重要作用。本文将深入探讨XML和XSLT的概念、应用及其在信息技术领域的重要性。 XML:数据交换的标准 XML是一种用于…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...