YOLO11改进 | 注意力机制 | 结合静态和动态上下文信息的注意力机制
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
上下文Transformer(CoT)块是一种新颖的Transformer风格模块,用于视觉识别。它充分利用输入键之间的上下文信息来指导动态注意力矩阵的学习,从而加强了视觉表示的能力。CoT块首先通过3×3卷积对输入键进行上下文化编码,得到输入的静态上下文表示。然后,将编码后的键与输入查询连接起来,通过两个连续的1×1卷积来学习动态的多头注意力矩阵。最后,将静态和动态上下文表示的融合作为输出。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅
目录
1.论文
2. 将CoTAttention添加到YOLO11中
2.1 CoTAttention代码实现
2.2 更改init.py文件
2.3 添加yaml文件
2.4 在task.py中进行注册
2.5 执行程序
3.修改后的网络结构图
4. 完整代码分享
5. GFLOPs
6. 进阶
7.总结
1.论文
论文地址:Contextual Transformer Networks for Visual Recognition——点击即可跳转
官方代码:官方代码仓库——点击即可跳转
2. 将CoTAttention添加到YOLO11中
2.1 CoTAttention代码实现
关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中
class CoTAttention(nn.Module):def __init__(self, dim=512, kernel_size=3):super().__init__()self.dim = dimself.kernel_size = kernel_sizeself.key_embed = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=4, bias=False),nn.BatchNorm2d(dim),nn.SiLU())self.value_embed = nn.Sequential(nn.Conv2d(dim, dim, 1, bias=False),nn.BatchNorm2d(dim))factor = 4self.attention_embed = nn.Sequential(nn.Conv2d(2 * dim, 2 * dim // factor, 1, bias=False),nn.BatchNorm2d(2 * dim // factor),nn.SiLU(),nn.Conv2d(2 * dim // factor, kernel_size * kernel_size * dim, 1))def forward(self, x):bs, c, h, w = x.shapek1 = self.key_embed(x) # bs,c,h,wv = self.value_embed(x).view(bs, c, -1) # bs,c,h,wy = torch.cat([k1, x], dim=1) # bs,2c,h,watt = self.attention_embed(y) # bs,c*k*k,h,watt = att.reshape(bs, c, self.kernel_size * self.kernel_size, h, w)att = att.mean(2, keepdim=False).view(bs, c, -1) # bs,c,h*wk2 = F.softmax(att, dim=-1) * vk2 = k2.view(bs, c, h, w)return k1 + k2
2.2 更改init.py文件
关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数
然后在下面的__all__中声明函数
2.3 添加yaml文件
关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_CoTA.yaml文件,粘贴下面的内容
- 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [ -1, 1, CoTAttention, [1024] ]- [[16, 19, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
- 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [ -1, 1, CoTAttention, [1024] ]- [[16, 19, 23], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
- 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [ -1, 1, CoTAttention, [1024] ]- [[16, 19, 23], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)
温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。
# YOLO11n
depth_multiple: 0.50 # model depth multiple
width_multiple: 0.25 # layer channel multiple
max_channel:1024# YOLO11s
depth_multiple: 0.50 # model depth multiple
width_multiple: 0.50 # layer channel multiple
max_channel:1024# YOLO11m
depth_multiple: 0.50 # model depth multiple
width_multiple: 1.00 # layer channel multiple
max_channel:512# YOLO11l
depth_multiple: 1.00 # model depth multiple
width_multiple: 1.00 # layer channel multiple
max_channel:512 # YOLO11x
depth_multiple: 1.00 # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512
2.4 在task.py中进行注册
关键步骤四:在task.py的parse_model函数中进行注册,
先在task.py导入函数
然后在task.py文件下找到parse_model这个函数,如下图,添加CoTAttention
elif m is CoTAttention:c1, c2 = ch[f], args[0]if c2 != nc:c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, *args[1:]]
2.5 执行程序
关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_CoTA.yaml的路径即可
from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/11/yolo11.yaml") # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem) # 训练模型
🚀运行程序,如果出现下面的内容则说明添加成功🚀
from n params module arguments0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1]22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]23 -1 1 577024 ultralytics.nn.modules.block.CoTAttention [256]24 [16, 19, 23] 1 464912 ultralytics.nn.modules.head.Detect [80, [64, 128, 256]]
YOLO11_CoTAttention summary: 332 layers, 3,201,104 parameters, 3,201,088 gradients, 7.1 GFLOPs
3.修改后的网络结构图
4. 完整代码分享
这个后期补充吧~,先按照步骤来即可
5. GFLOPs
关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution
未改进的YOLO11n GFLOPs
改进后的GFLOPs
6. 进阶
可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果
7.总结
通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——《YOLO11改进有效涨点》。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。
为什么订阅我的专栏? ——《YOLO11改进有效涨点》
-
前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。
-
详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。
-
问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑。
-
实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。
专栏适合人群:
-
对目标检测、YOLO系列网络有深厚兴趣的同学
-
希望在用YOLO算法写论文的同学
-
对YOLO算法感兴趣的同学等
相关文章:

YOLO11改进 | 注意力机制 | 结合静态和动态上下文信息的注意力机制
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 上下文Transformer(CoT&…...

Python中函数的使用方法
1 问题 在python的学习中,一个相同的程序可能会有多种不同的代码输入方式,那么函数这种方式是否方便快捷呢?今天我们来简单介绍函数的部分使用方法。 2 方法 定义函数:代码清单1Def function name (arguments):return result在上面…...

遨游智能终端赋能“危急特”场景,力推北斗技术规模化应用!
随着《北斗规模应用三年行动计划(2023-2025)》的发布,北京、湖北、重庆等多地出台北斗支持政策,北斗系统正稳步迈向“安全可控,泛在融合,开放兼容,服务全球”的发展目标。遨游通讯紧跟国家战略步…...

构建流媒体管道:利用 Docker 部署 Nginx-RTMP 从 FFmpeg RTMP 推流到 HLS 播放的完整流程
最近要实现一个类似导播台的功能,于是我先用 FFmpeg 实现一个参考对照的 Demo,我将其整理为一篇文章,方便后续大家或者和自己参考! 1、软件工具介绍 本次部署相关软件 / 工具如下: FFmpeg:全称是 Fast Fo…...

【汇编语言】寄存器(CPU工作原理)(六)—— 修改CS,IP的指令以及代码段
文章目录 前言1. 修改CS、IP的指令2. 问题分析:CPU运行的流程3. 代码段小结结语 前言 📌 汇编语言是很多相关课程(如数据结构、操作系统、微机原理)的重要基础。但仅仅从课程的角度出发就太片面了,其实学习汇编语言可以深入理解计…...

机器学习与神经网络:从技术前沿到诺贝尔奖的跨越与未来展望
近日,2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况。这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一种能…...

java 洛谷题单【数据结构1-2】二叉树
P4715 【深基16.例1】淘汰赛 解题思路 半区分配:将前半部分国家分配到左半区,后半部分国家分配到右半区,分别找到两个半区的最强国家。决赛和亚军确定:最后比较两个半区最强国家的能力值,失败者即为亚军,输…...

项目优化内容及实战
文章目录 事前思考Prometheus 普罗米修斯概述架构安装及使用 Grafana可视化数据库读写分离实战1-PrometheusGrafanaspringboot 事前思考 需要了解清楚:需要从哪些角度去分析实现?使用了缓存,就需要把缓存命中率数据进行收集;使用…...

科研绘图系列:R语言蝴蝶图(Butterfly Chart)
文章目录 介绍加载R包数据函数画图系统信息介绍 蝴蝶图(Butterfly Chart),也被称为龙卷风图(Tornado Chart)或双轴图(Dual-Axis Chart),是一种用于展示两组对比数据的图表。这种图表通过在中心轴两侧分别展示两组数据的条形图,形似蝴蝶的翅膀,因此得名。蝴蝶图的特点…...

【FPGA开发】Modelsim如何给信号分组
前面已经发布过了一篇关于 Modelsim 的入门使用教程,针对的基本是只有一个源文件加一个仿真tb文件的情况,而实际的工程应用中,往往是顶层加多个底层的源文件结构,如果不对信号进行一定的分组,就会显得杂乱不堪…...

Apache SeaTunnel 9月份社区发展记录
各位热爱 SeaTunnel 的小伙伴们,9月份社区月报来啦!这里将定期更新SeaTunnel社区每个月的重大进展,欢迎关注! 月度Merge Stars 感谢以下小伙伴上个月为 Apache SeaTunnel 做的精彩贡献(排名不分先后)&…...

系统架构设计师:数据库系统相关考题预测
作为系统架构设计师,在准备数据库系统相关的考试时,可以预期到的一些关键知识点包括但不限于以下几个方面: 数据库类型: 关系型数据库(RDBMS)与非关系型数据库(NoSQL)的区别及其适用场景。数据库管理系统(DBMS)的功能及组成部分。数据模型: 如何设计ER模型(实体-关…...

污水排放口细粒度检测数据集,污-水排放口的类型包括10类目标,10000余张图像,yolo格式目标检测,9GB数据量。
污水排放口细粒度检测数据集,污-水排放口的类型包括10类目标(1 合流下水道,2 雨水,3 工业废水,4 农业排水,5 牲畜养殖,6 水产养殖,7 地表径流,8 废水处理厂&…...

c++(多态)
多态的定义 多态是⼀个继承关系的下的类对象,去调⽤同⼀函数,产⽣了不同的⾏为 ⽐如Student继承了Person。Person对象买票全价,Student对象优惠买票。 多态实现的条件 • 必须指针或者引⽤调⽤虚函数 第⼀必须是基类的指针或引⽤,…...

【网络协议】TCP协议常用机制——延迟应答、捎带应答、面向字节流、异常处理,保姆级详解,建议收藏
💐个人主页:初晴~ 📚相关专栏:计算机网络那些事 前几篇文章,博主带大家梳理了一下TCP协议的几个核心机制,比如保证可靠性的 确认应答、超时重传 机制,和提高传输效率的 滑动窗口及其相关优化机…...

财政部官宣: 国家奖学金,涨了!
财政部副部长郭婷婷10月12日在国新办新闻发布会上介绍,关于高校学生的资助,财政部将会同相关部门从奖优和助困两个方面,分两步来调整完善高校学生的资助政策—— 第一步是在2024年推出以下政策措施: 国家奖学金的奖励名额翻倍。…...

antd table合并复杂单元格、分组合并行、分组合并列、动态渲染列、嵌套表头
项目里遇到个需求,涉及到比较复杂的单元格合并 、嵌套表头、分组合并行、合并列等,并且数据列还是动态的,效果图如下: 可以分组设置【显示列】例如:当前组为【合同约定】,显示列为【合同节点】和【节点金额…...

一键安装与配置Stable Diffusion,轻松实现AI绘画
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。 最新 Stable Di…...

模板和静态文件
模板和静态文件 1、templates模板2、静态文件2.1、static目录2.2、引用静态文件 1、templates模板 "templates"目录用于存放模板文件,通常是用于动态生成页面的文件。 在app01目录下创建templates文件夹,html文件均保存在templates中 在urls.p…...

Android Studio 打包aar丢失远程依赖问题解决
之前打包,使用的com.kezong.fat-aar,embed(‘XXXX’)的方式,可以使三方依赖打包在aar包里,在项目里直接使用 升级了Gradle:7.5后,打包就打包不起来了,一直报错ÿ…...

Chromium 搜索引擎功能浅析c++
地址栏输入:chrome://settings/searchEngines 可以看到 有百度等数据源,那么如何调整其顺序呢,此数据又存储在哪里呢? 1、浏览器初始化搜索引擎数据来源在 components\search_engines\prepopulated_engines.json // Copyright …...

DDoS攻击快速增长,如何在抗ddos防护中获得主动?
当下DDoS攻击规模不断突破上限。前段时间,中国首款3A《黑神话:悟空》也在一夜之内遭受到28万次攻击DDoS攻击,严重影响到全球玩家的游戏体验。Gcore发布的数据也显示了 DDoS攻击令人担忧的趋势,尤其是峰值攻击已增加到了令人震惊的…...

MongoDB 死锁 锁定问题
要查看 MongoDB 是否出现“锁死” (也就是所谓的 锁定问题,通常指长时间的锁定导致数据库操作无法正常进行),可以通过以下几种方法来检测数据库的锁定状态和锁定相关信息。 1. 使用 db.currentOp() 检查活动操作 MongoDB 提供了 db.currentOp() 命令来查…...

鸿蒙--商品列表
这里主要利用的是 List 组件 相关概念 Scroll:可滚动的容器组件,当子组件的布局尺寸超过父组件的视口时,内容可以滚动。List:列表包...

【Fargo】5:根据网络带宽动态调整发送速率
根据网络带宽动态调整发送速率 原理:这个简单实现的原理是 改变包的发送速率就可以改变发送码率了。例如1秒发1000个1KB 的包,带宽8Mbps,如果带宽是4Mbps,那么1秒发500个就够了。D:\XTRANS\thunderbolt\ayame\zhb-bifrost\player-only\worker\src\fargo\zhb_uv_udp_sender.…...

入门C语言:从原码、反码、补码到位运算
入门C语言:从原码、反码、补码到位运算 C语言作为一门底层编程语言,离不开对计算机硬件的深入理解。掌握整数的二进制表示法和位运算是深入学习C语言的基础。对于大一新生来说,理解原码、反码、补码与位运算这几个概念,将帮助你更…...

18770 差值最大
### 思路 为了找到两个数x和y使得x - y的值最大,并且x在y的右侧,我们可以使用以下方法: 1. 从右向左遍历数组,记录当前遍历到的最大值max_right。 2. 对于每个元素a[i],计算max_right - a[i],并更新最大差…...

【Flutter】合并多个流Stream
1.说明 无意间发现了一个好用的库rxdart,它为 Dart 的 Stream 添加了额外的功能。 2.功能 (1)合并多个流Stream 借助Rx.combineLatest2()合并两个流stream1和stream2。 注意:如果dart文件中同时使用了getx,需要隐…...

【SQL学习笔记】
Pycharm社区版的页面中无database选项? 1、进入Setting-Pluggins窗口,输入database navigator 2、安装后,重启即可 MySQL 的架构共分为两层:Server 层和存储引擎层 1、Server 层负责建⽴连接、分析和执⾏ SQL 2、存储引擎层负…...

contact form 7设置方法与详细步骤
Contact Form 7(CF7)是WordPress中非常流行的表单插件,用于创建和管理网站上的联系表单。以下是Contact Form 7的设置方法与详细步骤: 一、安装Contact Form 7插件 从WordPress后台安装: 登录WordPress后台,进入“插件”菜单下…...