中科星图GVE(案例)——AI实现建筑用地变化前后对比情况
目录
简介
函数
gve.Services.AI.ConstructionLandChangeExtraction(image1,image2)
代码
结果
知识星球
机器学习
简介
AI可以通过分析卫星图像、航拍影像或其他地理信息数据,实现建筑用地变化前后对比。以下是一种可能的实现方法:
-
数据获取:从卫星图像提供商、航拍影像提供商或地理信息数据提供商获取相关数据。这些数据应包括建筑用地的变化前后的图像或影像数据。
-
数据预处理:对获取的数据进行预处理,包括图像或影像的校正、去噪、裁剪等操作,以确保数据质量和一致性。
-
特征提取:使用计算机视觉技术和图像处理算法,提取建筑用地图像或影像中的特征。这些特征可以包括颜色、纹理、形状、大小等。
-
变化检测:对变化前后的特征进行比较和分析,通过对比不同特征的差异,检测出建筑用地的变化。例如,可以比较相同位置的像素值、纹理特征、边缘特征等。
-
变化可视化:将建筑用地变化的结果以可视化的方式呈现出来,例如在卫星图像中显示新建筑的位置、面积,或者使用动画效果展示建筑用地的变化过程。
需要注意的是,建筑用地变化的精确度和准确度取决于数据质量、特征提取算法的准确性以及算法参数的优化。此外,建筑用地变化的分析结果可能会受到其他因素的影响,如遮挡物、光照条件等。因此,在使用AI实现建筑用地变化对比时,需要对数据进行严格的处理和分析,以确保结果的可靠性和准确性。
函数
gve.Services.AI.ConstructionLandChangeExtraction(image1,image2)
建设用地变化检测
方法参数
- image1( Image )
image实例
- image2( Image )
image实例
返回值: FeatureCollection
代码
/*** @File : AI_Construction_Land_Change* @Time : 2024/06/04* @Author : GEOVIS Earth Brain* @Version : 0.1.0* @Contact : 中国(安徽)自由贸易试验区合肥市高新区望江西路900号中安创谷科技园一期A1楼36层* @License : (C)Copyright 中科星图数字地球合肥有限公司 版权所有* @Desc : 检测建筑用地变化前后对比情况* @Name : 通用建筑用地变化检测*/
/** */
// 获取geometry对象
var geometry = gve.Geometry.Polygon([[[117.10536519464627,31.852696363484398],[117.10977658752489,31.852696363484398],[117.10977658752489,31.8561969852761],[117.10536519464627,31.8561969852761],[117.10536519464627,31.852696363484398]]
])// 指定分辨率,外扩等
//@Ignore
var option = {};// 获取指定区域tif数据
var source2023 = "Base_Image_V2023_1";
var image1 = gve.Image.fromGeometry(geometry, source2023, option);// 数据来源
var source2024 = "Base_Image_V2024_1";
var image2 = gve.Image.fromGeometry(geometry, source2024, option);// 获取建筑物变化的FeatureCollection
var featureCol = gve.Services.AI.ConstructionLandChangeExtraction(image1, image2);Map.centerObject(featureCol);
Map.addLayer(featureCol);//使用卷帘对比建筑物变化前后的图像
Map.CompareImage(image1, image2, [featureCol]);
结果
知识星球
https://wx.zsxq.com/group/48888525452428
机器学习
https://www.cbedai.net/xg
相关文章:

中科星图GVE(案例)——AI实现建筑用地变化前后对比情况
目录 简介 函数 gve.Services.AI.ConstructionLandChangeExtraction(image1,image2) 代码 结果 知识星球 机器学习 简介 AI可以通过分析卫星图像、航拍影像或其他地理信息数据,实现建筑用地变化前后对比。以下是一种可能的实现方法: 数据获取&am…...

Spring Boot中获取application.yml中属性的几种方式
在Spring Boot应用程序中,可以通过多种方式从application.yml文件中获取配置属性。以下是几种常见的方法: 1. 使用Value注解 你可以使用Value注解将application.yml中的属性注入到Spring管理的bean中。 application.yml app:name: MySpringBootAppve…...

YOLO11改进 | 注意力机制 | 结合静态和动态上下文信息的注意力机制
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 上下文Transformer(CoT&…...

Python中函数的使用方法
1 问题 在python的学习中,一个相同的程序可能会有多种不同的代码输入方式,那么函数这种方式是否方便快捷呢?今天我们来简单介绍函数的部分使用方法。 2 方法 定义函数:代码清单1Def function name (arguments):return result在上面…...

遨游智能终端赋能“危急特”场景,力推北斗技术规模化应用!
随着《北斗规模应用三年行动计划(2023-2025)》的发布,北京、湖北、重庆等多地出台北斗支持政策,北斗系统正稳步迈向“安全可控,泛在融合,开放兼容,服务全球”的发展目标。遨游通讯紧跟国家战略步…...

构建流媒体管道:利用 Docker 部署 Nginx-RTMP 从 FFmpeg RTMP 推流到 HLS 播放的完整流程
最近要实现一个类似导播台的功能,于是我先用 FFmpeg 实现一个参考对照的 Demo,我将其整理为一篇文章,方便后续大家或者和自己参考! 1、软件工具介绍 本次部署相关软件 / 工具如下: FFmpeg:全称是 Fast Fo…...

【汇编语言】寄存器(CPU工作原理)(六)—— 修改CS,IP的指令以及代码段
文章目录 前言1. 修改CS、IP的指令2. 问题分析:CPU运行的流程3. 代码段小结结语 前言 📌 汇编语言是很多相关课程(如数据结构、操作系统、微机原理)的重要基础。但仅仅从课程的角度出发就太片面了,其实学习汇编语言可以深入理解计…...

机器学习与神经网络:从技术前沿到诺贝尔奖的跨越与未来展望
近日,2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况。这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一种能…...

java 洛谷题单【数据结构1-2】二叉树
P4715 【深基16.例1】淘汰赛 解题思路 半区分配:将前半部分国家分配到左半区,后半部分国家分配到右半区,分别找到两个半区的最强国家。决赛和亚军确定:最后比较两个半区最强国家的能力值,失败者即为亚军,输…...

项目优化内容及实战
文章目录 事前思考Prometheus 普罗米修斯概述架构安装及使用 Grafana可视化数据库读写分离实战1-PrometheusGrafanaspringboot 事前思考 需要了解清楚:需要从哪些角度去分析实现?使用了缓存,就需要把缓存命中率数据进行收集;使用…...

科研绘图系列:R语言蝴蝶图(Butterfly Chart)
文章目录 介绍加载R包数据函数画图系统信息介绍 蝴蝶图(Butterfly Chart),也被称为龙卷风图(Tornado Chart)或双轴图(Dual-Axis Chart),是一种用于展示两组对比数据的图表。这种图表通过在中心轴两侧分别展示两组数据的条形图,形似蝴蝶的翅膀,因此得名。蝴蝶图的特点…...

【FPGA开发】Modelsim如何给信号分组
前面已经发布过了一篇关于 Modelsim 的入门使用教程,针对的基本是只有一个源文件加一个仿真tb文件的情况,而实际的工程应用中,往往是顶层加多个底层的源文件结构,如果不对信号进行一定的分组,就会显得杂乱不堪…...

Apache SeaTunnel 9月份社区发展记录
各位热爱 SeaTunnel 的小伙伴们,9月份社区月报来啦!这里将定期更新SeaTunnel社区每个月的重大进展,欢迎关注! 月度Merge Stars 感谢以下小伙伴上个月为 Apache SeaTunnel 做的精彩贡献(排名不分先后)&…...

系统架构设计师:数据库系统相关考题预测
作为系统架构设计师,在准备数据库系统相关的考试时,可以预期到的一些关键知识点包括但不限于以下几个方面: 数据库类型: 关系型数据库(RDBMS)与非关系型数据库(NoSQL)的区别及其适用场景。数据库管理系统(DBMS)的功能及组成部分。数据模型: 如何设计ER模型(实体-关…...

污水排放口细粒度检测数据集,污-水排放口的类型包括10类目标,10000余张图像,yolo格式目标检测,9GB数据量。
污水排放口细粒度检测数据集,污-水排放口的类型包括10类目标(1 合流下水道,2 雨水,3 工业废水,4 农业排水,5 牲畜养殖,6 水产养殖,7 地表径流,8 废水处理厂&…...

c++(多态)
多态的定义 多态是⼀个继承关系的下的类对象,去调⽤同⼀函数,产⽣了不同的⾏为 ⽐如Student继承了Person。Person对象买票全价,Student对象优惠买票。 多态实现的条件 • 必须指针或者引⽤调⽤虚函数 第⼀必须是基类的指针或引⽤,…...

【网络协议】TCP协议常用机制——延迟应答、捎带应答、面向字节流、异常处理,保姆级详解,建议收藏
💐个人主页:初晴~ 📚相关专栏:计算机网络那些事 前几篇文章,博主带大家梳理了一下TCP协议的几个核心机制,比如保证可靠性的 确认应答、超时重传 机制,和提高传输效率的 滑动窗口及其相关优化机…...

财政部官宣: 国家奖学金,涨了!
财政部副部长郭婷婷10月12日在国新办新闻发布会上介绍,关于高校学生的资助,财政部将会同相关部门从奖优和助困两个方面,分两步来调整完善高校学生的资助政策—— 第一步是在2024年推出以下政策措施: 国家奖学金的奖励名额翻倍。…...

antd table合并复杂单元格、分组合并行、分组合并列、动态渲染列、嵌套表头
项目里遇到个需求,涉及到比较复杂的单元格合并 、嵌套表头、分组合并行、合并列等,并且数据列还是动态的,效果图如下: 可以分组设置【显示列】例如:当前组为【合同约定】,显示列为【合同节点】和【节点金额…...

一键安装与配置Stable Diffusion,轻松实现AI绘画
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。 最新 Stable Di…...

模板和静态文件
模板和静态文件 1、templates模板2、静态文件2.1、static目录2.2、引用静态文件 1、templates模板 "templates"目录用于存放模板文件,通常是用于动态生成页面的文件。 在app01目录下创建templates文件夹,html文件均保存在templates中 在urls.p…...

Android Studio 打包aar丢失远程依赖问题解决
之前打包,使用的com.kezong.fat-aar,embed(‘XXXX’)的方式,可以使三方依赖打包在aar包里,在项目里直接使用 升级了Gradle:7.5后,打包就打包不起来了,一直报错ÿ…...

Chromium 搜索引擎功能浅析c++
地址栏输入:chrome://settings/searchEngines 可以看到 有百度等数据源,那么如何调整其顺序呢,此数据又存储在哪里呢? 1、浏览器初始化搜索引擎数据来源在 components\search_engines\prepopulated_engines.json // Copyright …...

DDoS攻击快速增长,如何在抗ddos防护中获得主动?
当下DDoS攻击规模不断突破上限。前段时间,中国首款3A《黑神话:悟空》也在一夜之内遭受到28万次攻击DDoS攻击,严重影响到全球玩家的游戏体验。Gcore发布的数据也显示了 DDoS攻击令人担忧的趋势,尤其是峰值攻击已增加到了令人震惊的…...

MongoDB 死锁 锁定问题
要查看 MongoDB 是否出现“锁死” (也就是所谓的 锁定问题,通常指长时间的锁定导致数据库操作无法正常进行),可以通过以下几种方法来检测数据库的锁定状态和锁定相关信息。 1. 使用 db.currentOp() 检查活动操作 MongoDB 提供了 db.currentOp() 命令来查…...

鸿蒙--商品列表
这里主要利用的是 List 组件 相关概念 Scroll:可滚动的容器组件,当子组件的布局尺寸超过父组件的视口时,内容可以滚动。List:列表包...

【Fargo】5:根据网络带宽动态调整发送速率
根据网络带宽动态调整发送速率 原理:这个简单实现的原理是 改变包的发送速率就可以改变发送码率了。例如1秒发1000个1KB 的包,带宽8Mbps,如果带宽是4Mbps,那么1秒发500个就够了。D:\XTRANS\thunderbolt\ayame\zhb-bifrost\player-only\worker\src\fargo\zhb_uv_udp_sender.…...

入门C语言:从原码、反码、补码到位运算
入门C语言:从原码、反码、补码到位运算 C语言作为一门底层编程语言,离不开对计算机硬件的深入理解。掌握整数的二进制表示法和位运算是深入学习C语言的基础。对于大一新生来说,理解原码、反码、补码与位运算这几个概念,将帮助你更…...

18770 差值最大
### 思路 为了找到两个数x和y使得x - y的值最大,并且x在y的右侧,我们可以使用以下方法: 1. 从右向左遍历数组,记录当前遍历到的最大值max_right。 2. 对于每个元素a[i],计算max_right - a[i],并更新最大差…...

【Flutter】合并多个流Stream
1.说明 无意间发现了一个好用的库rxdart,它为 Dart 的 Stream 添加了额外的功能。 2.功能 (1)合并多个流Stream 借助Rx.combineLatest2()合并两个流stream1和stream2。 注意:如果dart文件中同时使用了getx,需要隐…...