当前位置: 首页 > news >正文

【pyspark学习从入门到精通3】弹性分布式数据集_1

目录

RDD 的内部工作机制

创建 RDDs

Schema

从文件中读取


弹性分布式数据集(RDDs)是一种分布式的不可变 JVM 对象集合,它允许你非常快速地执行计算,并且它们是 Apache Spark 的支柱。

顾名思义,数据集是分布式的;它根据某个键被分割成块,并分布到执行器节点。这样做允许对这些数据集进行非常快速的计算。同样,“理解 Spark”中提到的,RDDs 跟踪(记录)应用于每个块的所有转换,以加快计算速度,并在出现问题并且那部分数据丢失时提供回退;在这种情况下,RDDs 可以重新计算数据。这种数据血统是防止数据丢失的另一道防线,是数据复制的补充。

涵盖的主题有:
- RDD 的内部工作机制
- 创建 RDDs
- 全局作用域与局部作用域
- 转换(Transformations)
- 动作(Actions)

RDD 的内部工作机制

RDDs 并行运行。这是在 Spark 中工作的最大优势:每个转换都并行执行,从而大幅提高速度。

对数据集的转换是懒执行的。这意味着任何转换只有在对数据集调用动作时才执行。这有助于 Spark 优化执行。例如,考虑分析师通常会对数据集进行的以下非常常见的步骤:
1. 统计某个列中不同值的出现次数。
2. 选择以 A 开头的那些值。
3. 将结果打印到屏幕上。

正如前面提到的步骤听起来很简单,但如果只对以字母 A 开头的项目感兴趣,那么统计所有其他项目的不重复值就没有意义。因此,Spark 可以只统计以 A 开头的项目,然后打印结果到屏幕上。

让我们用代码来分解这个例子。首先,我们使用 .map(lambda v: (v, 1)) 方法命令 Spark 映射 A 的值,然后选择以 'A' 开头的记录(使用 .filter(lambda val: val.startswith('A')) 方法)。
如果我们调用 .reduceByKey(operator.add) 方法,它将减少数据集并添加(在这个例子中,计数)每个键的出现次数。所有这些步骤都转换了数据集。

其次,我们调用 .collect() 方法来执行步骤。这一步是我们数据集上的动作 - 它最终统计了数据集的不同元素。实际上,动作可能会颠倒转换的顺序,在映射之前先过滤数据,从而在传递给 reducer 之前得到一个更小的数据集。

创建 RDDs

在 PySpark 中创建 RDD 有两种方式:你可以使用 .parallelize(...) 并行化一个集合(列表或某些元素的数组):

data = sc.parallelize([('Amber', 22), ('Alfred', 23), ('Skye',4), ('Albert', 12), ('Amber', 9)])

或者你可以引用一个文件(或文件)位于本地或外部某处:

data_from_file = sc.\ textFile('/Users/drabast/Documents/PySpark_Data/VS14MORT.txt.gz',4)


sc.textFile(..., n) 中的最后一个参数指定了数据集被分成的分区数。

Spark 可以读取多种文件系统:本地的如 NTFS、FAT 或 Mac OS Extended (HFS+),或者分布式文件系统如 HDFS、S3、Cassandra 等。

支持多种数据格式:文本、parquet、JSON、Hive 表,以及使用 JDBC 驱动程序的数据从关系数据库中读取。请注意,Spark 可以自动处理压缩数据集(如我们前面例子中的 Gzipped 数据集)。

根据数据的读取方式,持有它的对象将略有不同。从文件中读取的数据表示为 MapPartitionsRDD 而不是 ParallelCollectionRDD,当我们 .parallelize(...) 一个集合。

Schema

RDDs 是无模式的数据结构(与 DataFrames 不同,我们将在下一章讨论)。因此,当使用 RDDs 时,Spark 允许像下面代码片段那样并行化数据集:

data_heterogenous = sc.parallelize([('Ferrari', 'fast'),{'Porsche': 100000},['Spain','visited', 4504]
]).collect()

所以,我们可以混合使用几乎任何东西:一个元组、一个字典或一个列表,Spark 都不会抱怨。
一旦你对数据集调用了 .collect()(也就是说,执行一个动作将其带回驱动程序),你可以像在 Python 中通常那样访问对象中的数据:
data_heterogenous[1]['Porsche']
这将产生以下结果:
100000
.collect() 方法将 RDD 的所有元素作为列表序列化后返回到驱动程序。

从文件中读取

当你从文本文件中读取时,文件中的每一行都会形成一个 RDD 的元素。
data_from_file.take(1) 命令将产生以下(有些难以阅读的)输出:
为了使其更易于阅读,让我们创建一个元素列表,以便每行都表示为值的列表。

相关文章:

【pyspark学习从入门到精通3】弹性分布式数据集_1

目录 RDD 的内部工作机制 创建 RDDs Schema 从文件中读取 弹性分布式数据集(RDDs)是一种分布式的不可变 JVM 对象集合,它允许你非常快速地执行计算,并且它们是 Apache Spark 的支柱。 顾名思义,数据集是分布式的&a…...

宠物健康监测仪健康守护者

在宠物护理领域,一款名为宠物健康监测仪的智能设备正逐渐成为宠物主人的新宠。这款设备不仅仅是一个简单的听诊器,它更像是宠物健康的智能管家,能够实时监测宠物的生理指标,并根据这些数据提供个性化的健康建议。 宠物健康监测仪…...

手写mybatis之解析和使用ResultMap映射参数配置

前言 学习源码是在学习什么呢? 就是为了通过这些源码级复杂模型中,学习系统框架的架构思维、设计原则和设计模式。在这些源码学习手写的过程中,感受、吸收并也是锻炼一种思维习惯,并尝试把这些思路技术迁移到平常的复杂业务设计开…...

LDR6500:低成本一拖二快充线解决方案

随着科技的飞速发展,我们的电子设备日益增多,从智能手机到平板电脑,再到各种可穿戴设备,它们已成为我们日常生活不可或缺的一部分。然而,随之而来的充电问题也日益凸显。为了解决这一难题,Type-C接口一拖二…...

DS线性表之单链表的讲解和实现(2)

文章目录 前言一、链表的概念二、链表的分类三、链表的结构四、前置知识准备五、单链表的模拟实现定义头节点初始化单链表销毁单链表打印单链表申请节点头插数据尾插数据头删数据尾删数据查询数据在pos位置之后插入数据删除pos位置之后的数据 总结 前言 本篇的单链表完全来说是…...

LeetCode 73 Set Matrix Zeroes 题目解析和python代码

题目: Given an m x n integer matrix matrix, if an element is 0, set its entire row and column to 0’s. You must do it in place. Example 1: Input: matrix [[1,1,1],[1,0,1],[1,1,1]] Output: [[1,0,1],[0,0,0],[1,0,1]] Example 2: Input: matrix …...

鸿蒙--WaterFlow 实现商城首页

目录结构 ├──entry/src/main/ets // 代码区 │ ├──common │ │ ├──constants │ │ │ └──CommonConstants.ets // 公共常量类 │ │ └──utils │ │ └──Logger.ets // 日志打印类 │ ├──entryability │ │ └──EntryAbility.ets // 程序入口…...

QT 中如何保存matlab 能打开的.mat数据矩阵!

Windows 上安装并使用 MATIO 库来保存 MATLAB 格式的 .mat 文件,需要进行以下步骤: 1. 下载并安装 CMake MATIO 使用 CMake 构建项目,因此你需要先安装 CMake。 前往 CMake 官网下载适用于 Windows 的安装程序并安装。 2. 下载 MATIO 库源…...

菱形继承(多继承)

1. 什么是菱形继承 也就是多继承,C独有的特性。 2. 菱形继承有什么问题? (1)存在内存浪费,多存一份父类的父类。 (2)容易造成二义性(不知道修改哪一个基本属性)。 3. 如…...

【功能安全】什么是Aspice?

背景 如何设计开发一个符合功能安全的模块,大多都是按照Aspice的规范去做。所以理解Aspice就很重要。 什么是Aspice 英文全称:Automotive Software Process Improvement Capability dEtermanition ASPICE4.0文档 汽车软件过程改进及能力评定&#xf…...

基于SpringBoot的国家基础信息管理功能的设计与实现

目录 前言 一、标准信息参考 1、信息来源 二、后台基础信息的维护管理 1、实体类和Mapper类 2、业务层和控制层设计 3、前端界面实现 三、管理页面效果 1、列表管理界面 2、国家信息调整 四、总结 前言 在之前的博客中,我们基于GeoTools工具实现了全球各个…...

Python酷库之旅-第三方库Pandas(145)

目录 一、用法精讲 656、pandas.Timestamp.resolution属性 656-1、语法 656-2、参数 656-3、功能 656-4、返回值 656-5、说明 656-6、用法 656-6-1、数据准备 656-6-2、代码示例 656-6-3、结果输出 657、pandas.Timestamp.second属性 657-1、语法 657-2、参数 6…...

最懂生活的年轻人,都在喝十元奶茶

文 | 螳螂观察 作者 | 如意 以前的打工人,总把二三十的高价奶茶当成身份的象征,喝上了高价奶茶才能叫做在生活中富养自己。 只是,到盘开支的时候,打工人才猛然发觉,动辄二三十一杯的奶茶,不知不觉刮走了…...

MinIO 学习订阅服务

MinIO 的入门非常简单 — 只需几个简单的命令和一个 100 MB 的小二进制文件,您就可以立即启动并运行一个功能性开发环境。但是,为了在生产规模上利用 MinIO 的全部功能,我们鼓励专业人士更多地了解 MinIO 的广泛功能。我们推出了 MinIO 学习订…...

【D3.js in Action 3 精译_029】3.5 给 D3 条形图加注图表标签(上)

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一部分 D3.js 基础知识 第一章 D3.js 简介(已完结) 1.1 何为 D3.js?1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践(上)1.3 数据可…...

用python做一个简单的画板

一,画板的介绍 画板(Paint Board)是一个提供用户绘图、涂鸦和创作的平台。现代数字画板通常是由软件程序实现的,具有多种功能。以下是画板的一些主要特征和功能: 1. 基本绘图工具 画笔和铅笔:用户可以选…...

根据传入的文件流链接实现前端下载

后端传入一个下载的url,实现点击按钮,下载文件。 方式一: 通过window.open(“URL”, _blank) 方式 PS:会打开一个新的页面 import React from react;const DownloadButton () > {// window.open("URL", "_…...

大数据新视界 --大数据大厂之大数据环境下的零信任安全架构:构建可靠防护体系

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

基于springboot的高校招生系统(含源码+sql+视频导入教程+文档+PPT)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于springboot的高校招生系统1拥有两种角色:管理员和用户 管理员:学生管理、专业管理、报名管理、录取通知管理、招生公告管理等 用户:登录注册、报…...

【C++设计模式】行为型模式:观察者模式

文章目录 行为型模式:观察者模式 行为型模式:观察者模式 观察者模式定义了一种一对多的依赖关系:它让一个主题(被观察者)对象关联多个观察者对象,并且当主题对象的状态发生变化时,它会主动通知…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...