当前位置: 首页 > news >正文

dbt doc 生成文档命令示例应用

DBT提供了强大的命令行工具,它使数据分析师和工程师能够更有效地转换仓库中的数据。dbt的一个关键特性是能够为数据模型生成文档,这就是dbt docs命令发挥作用的地方。本教程将指导您完成使用dbt生成和提供项目文档的过程。

dbt doc 命令

dbt docs命令有两个子命令:generate和serve。generate命令用于创建项目文档,而serve命令用于在web浏览器中查看此文档。

  • 生成工程文档

要为dbt项目生成文档,在终端中导航到dbt项目的根目录,并运行以下命令:

dbt docs generate

该命令将为您的项目创建一个带有文档的静态站点。该站点包括关于您的模型、测试、源代码等的信息。

  • 项目文档服务

生成文档之后,您可以使用serve命令在本地查看它。在终端上运行以下命令:

dbt docs serve

这将启动web服务器实例,并在默认的web浏览器中打开文档。我们可以浏览文档以查看有关dbt项目的信息。

  1. 浏览文档

生成的文档提供了关于dbt项目的大量信息。您可以使用project /Database切换在项目文件夹层次结构视图和以数据库为中心的表和视图集合之间切换。您还可以使用搜索栏来查找项目中的特定模型。

  1. 数据血缘关系

dbt文档的强大特性是它能够可视化模型之间的关系。我们可以通过点击模型页面中的“Lineage”选项卡来访问这个特性。这将显示所选模型的上游或下游的所有模型的图表,提供数据沿沿性的清晰视图。
在这里插入图片描述

dbt docs 示例

假设我们dbt项目有一个简单的模型,可以将原始销售数据转换为更有用的格式。模型定义了名为sales.sql的文件中:

-- models/sales.sql
{{ config(materialized='table') }}select    order_id,    product_id,    customer_id,    quantity,    price,    quantity * price as total_price,    order_datefrom raw.sales

同时定义模型的描述文件,sales.yaml:

# models/schema.yml
version: 2models:  - name: sales    description: This table contains transformed sales data.    columns:      - name: order_id        description: The unique identifier for each order.      - name: product_id        description: The unique identifier for each product.      - name: customer_id        description: The unique identifier for each customer.      - name: quantity        description: The quantity of the product sold in the order.      - name: price        description: The price of the product.      - name: total_price        description: The total price of the order, calculated as quantity * price.      - name: order_date        description: The date the order was placed.

这里只是示例,当然可以使用中文,更符合用户习惯。

现在可以使用dbt docs generate为这个模型生成文档。在命令行界面中导航到dbt项目根目录并运行生成文档命令:

dbt docs generate

该命令将在dbt项目中生成**target目录。在这个目录中,可以找到manifest.jsoncatalog.json**文件。这些文件包含有关dbt项目的元数据,基于这些元数据能生成文档web网页。

接下来,我们可以使用dbt docs serve在本地启动文档服务:

dbt docs serve

该命令将启动一个web服务器,并打开文档默认web浏览器。在这里可以看到sales模型的文档页面,其中包含在sales.yaml描述文件中定义的所有列描述和其他信息。

总结

dbt docs命令是为dbt项目生成和提供文档的强大工具。通过使用这个命令,我们可以确保团队和其他相关人员能够访问数据模型的最新的、准确的文档信息。期待您的真诚反馈,更多内容请阅读数据分析工程专栏。

相关文章:

dbt doc 生成文档命令示例应用

DBT提供了强大的命令行工具,它使数据分析师和工程师能够更有效地转换仓库中的数据。dbt的一个关键特性是能够为数据模型生成文档,这就是dbt docs命令发挥作用的地方。本教程将指导您完成使用dbt生成和提供项目文档的过程。 dbt doc 命令 dbt docs命令有…...

【Windows】【DevOps】Windows Server 2022 安装ansible,基于powershell实现远程自动化运维部署 入门到放弃!

目标服务器安装openssh server参考 【Windows】【DevOps】Windows Server 2022 在线/离线 安装openssh实现ssh远程登陆powershell、scp文件拷贝-CSDN博客 注意:Ansible不支持Windows操作系统部署 根据官方说明: Windows Frequently Asked Questions —…...

深入理解 Parquet 文件格式

深入理解 Parquet 文件格式 深入理解 Parquet 文件格式一、引言二、为什么采用 Parquet 格式1. 行式存储的局限性2. 列式存储的优势 三、Parquet 的工作原理1. 文件结构2. 列块和页面3. 编码和压缩 四、具体数据实例1. 数据示例2. 行式存储 vs 列式存储3. 查询性能对比4. 压缩效…...

计算机挑战赛3

老式的计算机只能按照固定次序进行运算,华安大学就有这样一台老式计算机,计算模式为AB#C,和#为输入的运算符(可能是、-或*,运算符优先级与C一致),现给出A,B,C的数值以及和#对应的运算符&#xf…...

深度学习:循环神经网络—RNN的原理

传统神经网络存在的问题? 无法训练出具有顺序的数据。模型搭建时没有考虑数据上下之间的关系。 RNN神经网络 RNN(Recurrent Neural Network,循环神经网络)是一种专门用于处理序列数据的神经网络。在处理序列输入时具有记忆性…...

蓝桥杯刷题--幸运数字

幸运数字 题目: 解析: 我们由题目可以知道,某个进制的哈沙德数就是该数和各个位的和取整为0.然后一个幸运数字就是满足所有进制的哈沙德数之和.然后具体就是分为以下几个步骤 1. 我们先写一个方法,里面主要是用来判断,这个数在该进制下是否是哈沙德数 2. 我们在main方法里面调用…...

Node.js入门——fs、path模块、URL端口号、模块化导入导出、包、npm软件包管理器

Node.js入门 1.介绍 定义:跨平台的JS运行环境,使开发者可以搭建服务器端的JS应用程序作用:使用Node.Js编写服务器端代码Node.js是基于Chrome V8引擎进行封装,Node中没有BOM和DOM 2.fs模块-读写文件 定义:封装了与…...

多元线性回归:机器学习中的经典模型探讨

引言 多元线性回归是统计学和机器学习中广泛应用的一种回归分析方法。它通过分析多个自变量与因变量之间的关系,帮助我们理解和预测数据的行为。本文将深入探讨多元线性回归的理论背景、数学原理、模型构建、技术细节及其实际应用。 一、多元线性回归的背景与发展…...

域1:安全与风险管理 第1章实现安全治理的原则和策略

---包括OSG 1、2、3、4 章--- 第1章、实现安全治理的原则和策略 1、由保密性、完整性和可用性组成的 CIA 三元组。 保密性原则是指客体不会被泄露给 未经授权的主体。完整性原则是指客体保持真实性且只被经过授权的主体进行有目的的修改。 可用性原则指被授权的主体能实时和…...

【大数据】学习大数据开发应该从哪些技术栈开始学习?

学习大数据开发可以从以下几个技术栈和阶段入手。以下内容按学习顺序和重要性列出,帮助你逐步掌握大数据开发的核心技能: 1. 编程基础 Java:Hadoop 和许多大数据工具(如 Spark、Flink)的核心代码都是用 Java 编写的&…...

CentOS快速配置网络Docker快速部署

CentOS快速配置网络&&Docker快速部署 CentOS裸机Docker部署1.联通外网2.配置CentOS镜像源3.安装Docker4.启动Docker5.CentOS7安装DockerCompose Bug合集ERROR [internal] load metadata for docker.io/library/java:8-alpineError: Could not find or load main class …...

Grounded-SAM Demo部署搭建

目录 1 环境部署 2 Grounded-SAM Demo安装 3 运行Demo 3.1 运行Gradio APP 3.2 Gradio APP操作 1 环境部署 由于SAM建议使用CUDA 11.3及以上版本,这里使用CUDA 11.4版本。 另外,由于整个SAM使用的是Pytorch开发,因此需要Python环境&…...

C语言 | 第十六章 | 共用体 家庭收支软件-1

P 151 结构体定义三种形式 2023/3/15 一、创建结构体和结构体变量 方式1-先定义结构体,然后再创建结构体变量。 struct Stu{ char *name; //姓名 int num; //学号 int age; //年龄 char group; //所在学习小组 float score; //成绩 }; struct Stu stu1, stu2; //…...

【论文阅读】Learning a Few-shot Embedding Model with Contrastive Learning

使用对比学习来学习小样本嵌入模型 引用:Liu, Chen, et al. “Learning a few-shot embedding model with contrastive learning.” Proceedings of the AAAI conference on artificial intelligence. Vol. 35. No. 10. 2021. 论文地址:下载地址 论文代码…...

OKHTTP 如何处理请求超时和重连机制

😄作者简介: 小曾同学.com,一个致力于测试开发的博主⛽️,主要职责:测试开发、CI/CD 如果文章知识点有错误的地方,还请大家指正,让我们一起学习,一起进步。 😊 座右铭:不…...

基于Springboot vue的流浪狗领养管理系统设计与实现

博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...

爬虫案例——网易新闻数据的爬取

案例需求: 1.爬取该新闻网站——(网易新闻)的数据,包括标题和链接 2.爬取所有数据(翻页参数) 3.利用jsonpath解析数据 分析: 该网站属于异步加载网站——直接网页中拿不到,需要…...

SpringCloud 2023 Gateway的Filter配置介绍、类型、内置过滤器、自定义全局和单一内置过滤器

目录 1. Filter介绍2. Filter类型3. 内置过滤器3.1 请求头(RequestHeader)相关GatewayFilter Factory3.2 请求参数(RequestParameter)相关GatewayFilter Factory3.3 回应头(ResponseHeader)相关GatewayFilter Factory3.4 前缀和路径相关GatewayFilter Factory3.5 Default Filte…...

从银幕到现实:擎天柱机器人即将改变我们的生活

擎天柱(Optimus)是《变形金刚》系列电影中的主角,如今也成为特斯拉正在开发的通用机器人。2022年10月,特斯拉展示了这一机器人的初始版本,创始人埃隆马斯克表示,希望到2023年能够启动生产。他指出&#xff…...

408算法题leetcode--第33天

509. 斐波那契数 题目地址:509. 斐波那契数 - 力扣(LeetCode) 题解思路:dp 时间复杂度:O(n) 空间复杂度:O(n) 代码: class Solution { public:int fib(int n) {// dp数组含义:dp[i]即i位置…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

DAY 26 函数专题1

函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...

python可视化:俄乌战争时间线关键节点与深层原因

俄乌战争时间线可视化分析:关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一,自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具,系统分析这场战争的时间线、关键节点及其背后的深层原因,全面…...

MLP实战二:MLP 实现图像数字多分类

任务 实战(二):MLP 实现图像多分类 基于 mnist 数据集,建立 mlp 模型,实现 0-9 数字的十分类 task: 1、实现 mnist 数据载入,可视化图形数字; 2、完成数据预处理:图像数据维度转换与…...

Python爬虫(四):PyQuery 框架

PyQuery 框架详解与对比 BeautifulSoup 第一部分:PyQuery 框架介绍 1. PyQuery 是什么? PyQuery 是一个 Python 的 HTML/XML 解析库,它采用了 jQuery 的语法风格,让开发者能够用类似前端 jQuery 的方式处理文档解析。它的核心特…...