题目解析:1423. 可获得的最大点数
题目解析:1423. 可获得的最大点数
> Problem: 1423. 可获得的最大点数
题目描述:
你有一个整数数组 cardPoints
,表示排成一行的几张卡牌的点数。你每次可以从这排卡牌的 开头或末尾 拿一张卡牌,最终你需要正好拿 k
张卡牌。目标是计算你能够拿到的 最大点数。
示例:
-
示例 1:
- 输入:
cardPoints = [1, 2, 3, 4, 5, 6, 1]
,k = 3
- 输出:
12
- 解释:最优选择是从右侧拿三张卡牌,点数为
1 + 6 + 5 = 12
。
- 输入:
-
示例 2:
- 输入:
cardPoints = [2, 2, 2]
,k = 2
- 输出:
4
- 解释:不管选择哪两张牌,总是
2 + 2 = 4
。
- 输入:
-
示例 3:
- 输入:
cardPoints = [9, 7, 7, 9, 7, 7, 9]
,k = 7
- 输出:
55
- 解释:所有卡牌都需要选择,所以直接将它们的和返回。
- 输入:
解题思路:
方法一:正向思维(暴力法)
最直接的思路就是使用正向思维,从数组的两端开始取卡牌。我们可以从数组的开头拿一些卡牌,剩下的从末尾拿。为了找到能够获得的最大点数,尝试不同的取卡顺序,计算所有可能的组合得分。
正向思维的具体步骤:
- 从开头拿 0 到 k 张卡牌,剩余的从末尾拿。
- 枚举所有可能的组合,计算其点数。
- 选择点数最大的作为结果。
虽然这个方法能解出问题,但时间复杂度是 O(k)
,对于较大的 k
值,计算速度会变慢。
代码实现:
class Solution {
public:int maxScore(vector<int>& cardPoints, int k) {int n = cardPoints.size();int leftSum = 0, rightSum = 0;// 先计算最左侧k张牌的总和for (int i = 0; i < k; ++i) {leftSum += cardPoints[i];}int maxPoints = leftSum;// 逐步将左侧的卡牌移到右侧,同时更新最大得分for (int i = 0; i < k; ++i) {leftSum -= cardPoints[k - 1 - i]; // 从左侧减少一张卡牌rightSum += cardPoints[n - 1 - i]; // 从右侧增加一张卡牌maxPoints = max(maxPoints, leftSum + rightSum);}return maxPoints;}
};
复杂度分析:
- 时间复杂度:
O(k)
。我们需要遍历k
次来计算所有可能的得分。 - 空间复杂度:
O(1)
。只使用了常量级别的额外空间。
方法二:滑动窗口优化(逆向思维)
上面的正向思维方法虽然能够解决问题,但效率相对较低。我们可以通过逆向思维使用滑动窗口优化。
关键点:
- 我们可以将问题转化为滑动窗口问题,通过取出未选择的卡牌部分来最大化剩余部分的和。
- 具体来说,卡牌的总数为 n,我们选择的卡牌总数为
k
,则有n - k
张卡牌是不被选择的。如果能找到不被选择的n - k
张卡牌的最小和,那么总和减去这部分卡牌和,就是我们需要的最大点数。
优化思路:
- 首先计算卡牌的总和
totalSum
。 - 使用滑动窗口法,找出大小为
n - k
的子数组的最小和。 - 最大点数就是
totalSum - minWindowSum
。
通过这个方法,问题的复杂度从暴力解法的 O(2^k)
优化为 O(n)
,大大提升了效率。
代码实现:
class Solution {
public:int maxScore(vector<int>& cardPoints, int k) {int n = cardPoints.size();// 如果k等于数组长度,直接返回整个数组的和if (k == n) {return accumulate(cardPoints.begin(), cardPoints.end(), 0);}// 计算总点数int totalPoints = accumulate(cardPoints.begin(), cardPoints.end(), 0);// 滑动窗口的长度为n - k,找到最小的窗口和int windowSize = n - k;int currentWindowSum = accumulate(cardPoints.begin(), cardPoints.begin() + windowSize, 0);int minWindowSum = currentWindowSum;// 使用滑动窗口计算最小的窗口和for (int i = windowSize; i < n; ++i) {currentWindowSum += cardPoints[i] - cardPoints[i - windowSize];minWindowSum = min(minWindowSum, currentWindowSum);}// 最大点数为总点数减去最小的窗口和return totalPoints - minWindowSum;}
};
复杂度分析:
- 时间复杂度:
O(n)
,我们只需遍历数组两次,一次用于计算总和,一次用于计算最小滑动窗口和。 - 空间复杂度:
O(1)
,除了存储几个辅助变量外,代码不需要额外的空间。
相关文章:

题目解析:1423. 可获得的最大点数
题目解析:1423. 可获得的最大点数 > Problem: 1423. 可获得的最大点数 题目描述: 你有一个整数数组 cardPoints,表示排成一行的几张卡牌的点数。你每次可以从这排卡牌的 开头或末尾 拿一张卡牌,最终你需要正好拿 k 张卡牌。目…...

【MySQL】数据库的操作
文章目录 一、查看数据库(显示所有的数据库)二、使用数据库二、创建数据库字符集编码(为数据进行编码然后保存)校验(排序)规则(如何对数据进行排序)推荐这样创建数据库: …...

Spring Boot读取resources目录下文件(打成jar可用),并放入Guava缓存
1、文件所在位置: 2、需要Guava依赖: <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>23.0</version></dependency>3、启动时就读取放入缓存的代码…...

rsync 数据镜像同步服务笔记
1. rsync概述 定义:rsync是一款数据镜像备份工具,支持快速完全备份和增量备份,支持本地复制与远程同步。镜像指两份完全相同的数据备份.特点: 支持整个目录树和文件系统的更新;可选择性地保留符号链接、文件属性、权限…...

【layui】多文件上传组件实现
插件预览效果: 需要引入layui的脚本文件layui.js和样式文件layui.css html代码: <div class"layui-input-block"><div class"layui-upload-list"><table class"layui-table"><colgroup><col…...

多维最短路
D-最短?路径_牛客小白月赛102 (nowcoder.com) #include <bits/stdc.h> #define int long long using namespace std; const int N1e6; struct node {int x;int y;int z;bool operator>(const node& other) const {return x> other.x;} }; signed m…...

设计模式03-装饰模式(Java)
4.4 装饰模式 1.模式定义 不改变现有对象结构的情况下,动态地给该对象增加一些职责(即增加其额外功能)的模式。 2.模式结构 抽象构件角色 :定义一个抽象接口以规范准备接收附加责任的对象。客户端可以方便调用装饰类和被装饰类…...

TiDB 监控组件之 Blackbox_exporter 运行原理
作者: TiDBerHailang 原文来源: https://tidb.net/blog/b269e96f 1. 介绍 本文介绍了 TiDB 集群监控组件Blackbox Exporter监控运行机制和配置方式。Blackbox Exporter是Prometheus官方提供的 Exporter,它能够通过多种协议对网络服务进行…...

Java之网络编程详解
一、Java网络编程的基本概念 Java网络编程是指在Java语言中使用网络协议和API进行网络通信的编程技术。Java网络编程可以实现多种应用场景,包括客户端/服务器通信、网站开发、分布式系统等。 二、Java网络编程的基本原理 网络编程的核心概念包括网络通信协议、So…...

苍穹外卖学习笔记(二十)
文章目录 用户端历史订单模块:查询历史订单OrderControllerOrderServiceOrderServiceImpl 查询订单详情OrderControllerOrderServiceOrderServiceImpl 用户端历史订单模块: 查询历史订单 OrderController /*** 历史订单*/GetMapping("/historyOrd…...

2024 第一次周赛
A: 题目大意 骑士每连续 i 天每天会得到 i 个金币,(i 1, 2, 3 , …),那么展开看每一天可以得到的金币数:1 2 2 3 3 3 4 4 4 5 5 5 5 5 … 可以发现就是1个1 ,2个2, 3个3…,那么我…...

【数据脱敏方案】不使用 AOP + 注解,使用 SpringBoot+YAML 实现
文章目录 引入认识 YAML 格式规范定义脱敏规则格式脱敏逻辑实现读取 YAML 配置文件获取脱敏规则通过键路径获取对应字段规则原始优化后 对数据进行脱敏处理递归生成字段对应的键路径脱敏测试 完整工具类 引入 在项目中遇到一个需求,需要对交易接口返回结果中的指定…...

dbt doc 生成文档命令示例应用
DBT提供了强大的命令行工具,它使数据分析师和工程师能够更有效地转换仓库中的数据。dbt的一个关键特性是能够为数据模型生成文档,这就是dbt docs命令发挥作用的地方。本教程将指导您完成使用dbt生成和提供项目文档的过程。 dbt doc 命令 dbt docs命令有…...

【Windows】【DevOps】Windows Server 2022 安装ansible,基于powershell实现远程自动化运维部署 入门到放弃!
目标服务器安装openssh server参考 【Windows】【DevOps】Windows Server 2022 在线/离线 安装openssh实现ssh远程登陆powershell、scp文件拷贝-CSDN博客 注意:Ansible不支持Windows操作系统部署 根据官方说明: Windows Frequently Asked Questions —…...

深入理解 Parquet 文件格式
深入理解 Parquet 文件格式 深入理解 Parquet 文件格式一、引言二、为什么采用 Parquet 格式1. 行式存储的局限性2. 列式存储的优势 三、Parquet 的工作原理1. 文件结构2. 列块和页面3. 编码和压缩 四、具体数据实例1. 数据示例2. 行式存储 vs 列式存储3. 查询性能对比4. 压缩效…...

计算机挑战赛3
老式的计算机只能按照固定次序进行运算,华安大学就有这样一台老式计算机,计算模式为AB#C,和#为输入的运算符(可能是、-或*,运算符优先级与C一致),现给出A,B,C的数值以及和#对应的运算符…...

深度学习:循环神经网络—RNN的原理
传统神经网络存在的问题? 无法训练出具有顺序的数据。模型搭建时没有考虑数据上下之间的关系。 RNN神经网络 RNN(Recurrent Neural Network,循环神经网络)是一种专门用于处理序列数据的神经网络。在处理序列输入时具有记忆性…...

蓝桥杯刷题--幸运数字
幸运数字 题目: 解析: 我们由题目可以知道,某个进制的哈沙德数就是该数和各个位的和取整为0.然后一个幸运数字就是满足所有进制的哈沙德数之和.然后具体就是分为以下几个步骤 1. 我们先写一个方法,里面主要是用来判断,这个数在该进制下是否是哈沙德数 2. 我们在main方法里面调用…...

Node.js入门——fs、path模块、URL端口号、模块化导入导出、包、npm软件包管理器
Node.js入门 1.介绍 定义:跨平台的JS运行环境,使开发者可以搭建服务器端的JS应用程序作用:使用Node.Js编写服务器端代码Node.js是基于Chrome V8引擎进行封装,Node中没有BOM和DOM 2.fs模块-读写文件 定义:封装了与…...

多元线性回归:机器学习中的经典模型探讨
引言 多元线性回归是统计学和机器学习中广泛应用的一种回归分析方法。它通过分析多个自变量与因变量之间的关系,帮助我们理解和预测数据的行为。本文将深入探讨多元线性回归的理论背景、数学原理、模型构建、技术细节及其实际应用。 一、多元线性回归的背景与发展…...

域1:安全与风险管理 第1章实现安全治理的原则和策略
---包括OSG 1、2、3、4 章--- 第1章、实现安全治理的原则和策略 1、由保密性、完整性和可用性组成的 CIA 三元组。 保密性原则是指客体不会被泄露给 未经授权的主体。完整性原则是指客体保持真实性且只被经过授权的主体进行有目的的修改。 可用性原则指被授权的主体能实时和…...

【大数据】学习大数据开发应该从哪些技术栈开始学习?
学习大数据开发可以从以下几个技术栈和阶段入手。以下内容按学习顺序和重要性列出,帮助你逐步掌握大数据开发的核心技能: 1. 编程基础 Java:Hadoop 和许多大数据工具(如 Spark、Flink)的核心代码都是用 Java 编写的&…...

CentOS快速配置网络Docker快速部署
CentOS快速配置网络&&Docker快速部署 CentOS裸机Docker部署1.联通外网2.配置CentOS镜像源3.安装Docker4.启动Docker5.CentOS7安装DockerCompose Bug合集ERROR [internal] load metadata for docker.io/library/java:8-alpineError: Could not find or load main class …...

Grounded-SAM Demo部署搭建
目录 1 环境部署 2 Grounded-SAM Demo安装 3 运行Demo 3.1 运行Gradio APP 3.2 Gradio APP操作 1 环境部署 由于SAM建议使用CUDA 11.3及以上版本,这里使用CUDA 11.4版本。 另外,由于整个SAM使用的是Pytorch开发,因此需要Python环境&…...

C语言 | 第十六章 | 共用体 家庭收支软件-1
P 151 结构体定义三种形式 2023/3/15 一、创建结构体和结构体变量 方式1-先定义结构体,然后再创建结构体变量。 struct Stu{ char *name; //姓名 int num; //学号 int age; //年龄 char group; //所在学习小组 float score; //成绩 }; struct Stu stu1, stu2; //…...

【论文阅读】Learning a Few-shot Embedding Model with Contrastive Learning
使用对比学习来学习小样本嵌入模型 引用:Liu, Chen, et al. “Learning a few-shot embedding model with contrastive learning.” Proceedings of the AAAI conference on artificial intelligence. Vol. 35. No. 10. 2021. 论文地址:下载地址 论文代码…...

OKHTTP 如何处理请求超时和重连机制
😄作者简介: 小曾同学.com,一个致力于测试开发的博主⛽️,主要职责:测试开发、CI/CD 如果文章知识点有错误的地方,还请大家指正,让我们一起学习,一起进步。 😊 座右铭:不…...

基于Springboot vue的流浪狗领养管理系统设计与实现
博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...

爬虫案例——网易新闻数据的爬取
案例需求: 1.爬取该新闻网站——(网易新闻)的数据,包括标题和链接 2.爬取所有数据(翻页参数) 3.利用jsonpath解析数据 分析: 该网站属于异步加载网站——直接网页中拿不到,需要…...

SpringCloud 2023 Gateway的Filter配置介绍、类型、内置过滤器、自定义全局和单一内置过滤器
目录 1. Filter介绍2. Filter类型3. 内置过滤器3.1 请求头(RequestHeader)相关GatewayFilter Factory3.2 请求参数(RequestParameter)相关GatewayFilter Factory3.3 回应头(ResponseHeader)相关GatewayFilter Factory3.4 前缀和路径相关GatewayFilter Factory3.5 Default Filte…...