当前位置: 首页 > news >正文

线性代数 行列式

一、行列式

1、定义

            一个数学概念,主要用于 线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值)

2、二阶行列式

        像这样将一个式子收缩称为一个 2*2 的表达形式

        二阶行列式计算:对角线法,左上到右下(主对角线)减去右上到左下(副对角线)

3、三阶行列式

        

        对角线法则计算:

4、n阶行列式

4.1、排列

        从一组元素中选出若干个元素,并按照一定的顺序排列起来。对于一个包含 n 个元素的集合,其所有元素的全排列数目是 n!(即 n 的阶乘)

4.2、逆序

        如果一个较大的数排在一个较小的数前面,则称这两个数构成一个逆序;逆序的总数称为逆序数;逆序数可以帮助我们理解排列的“混乱”程度。

例如,在排列 (3,1,4,2) 中,逆序有: 3 和 1 构成一个逆序、3 和 2 构成一个逆序、4 和 2 构成一个逆序;这个排列的逆序数是 3;逆序的表示符号为N或者为τ(读作涛)

4.3、奇排列和偶排列

        如果一个排列的逆序数是奇数,则称该排列为奇排列;如果是偶数,则称该排列为偶排列。

例如:N(1432) = 3,则 (1432) 为奇排列;N(4321)=6,则 (4321) 为偶排列。

4.4、对换

        排列中的任意两个元素进行交换(称为对换),会改变排列的奇偶性。例如:N(651243) = 10,为偶排列,将5和1兑换,则 N(615243) = 9,为奇排列。

4.5、行列式展开

       按行展开

 

        3阶行列式按行展开后为6项,每项为3个不同行不同列的3个元素相乘,aij元素的行标i都是123的自然排列,aij元素列标j则为:123、231、312、321、213、132,总数为3!=6(保证 按照行顺序进行,则逆序数就可用列顺序排列即可 )

分别计算列标排列的逆序数:

N(123) = 0 偶数

N(231) = 1 + 1 = 2 偶数

N(312) = 2 偶数

N(321) = 2 + 1 = 3 奇数

N(213) = 1 奇数

N(132) = 1 奇数

通过观察公式可以看出,逆序数为偶数的排列的运算符号为+,为奇数的排列的运算符号为-

总结:

1.行标取自然排列(一般以第一行为准,按照从左到右依次排队)

2.不同行不同列的3个元素相乘 (第一行取了第一列的数据,那么第二行的数据只能从第二列或第三列获取)

3.列标取排列的所有可能 (第一行取了第一列的数据,那么就产生两种数据 ,a_{11} a_{12} a_{13}或者a_{11}a_{23}a_{32},同理类推,在第一个确定的情况,后面只会有两种排列

4.列标排列的逆序数的奇偶性决定运算符号,逆序数为偶数的运算符号为+,奇数的运算符号为-

那么得到n阶行列式的表达式为

也就是挨个列举第一行的值乘上排列得到值的累加之和;使用逆序数来判断符号

例如:

按列展开

        同按行展开,列标按顺序获取,列举所有可能行标,判断行标的逆序数,将所有可能值相机得到最终结果

4.6、特殊n阶行列式

        行列式某一行(列)全为0,则行列式为0;

        三角形行列式等于对角线元素的乘积(逆序数判断正负号 ,主对角线为正、副对角线为负);

二、行列式性质

1、行列式的转置等于行列式本身  det(A)^T=det(A)

2、交换行列式的两行(任意行列)会导致行列式的值变为其原来的相反数;

3、行列式两行(列)相等,则行列式为0;

4、用k乘以行列式某一行的所有元素,等于用k乘以行列式

5、如果一个行列式的两行(或两列)对应成比例,那么这个行列式的值必定为零。(与3类似)

6、如果一个行列式的某一行(或某一列)是两个数之和,那么这个行列式可以表示为两个行列式的和 det⁡(A)=det⁡(B)+det⁡(C)

7、将行列式的某一行(列)乘以一个数加到另一行(列)上,行列式的值保持不变。(切记,归根结底是行列式的行相加或者列相加,不是行乘外来数值赋值到本行列式)

三、行列式扩展

1、代数余子式

        余子式  M_{ij}  给定一个 n×n的矩阵 A,其第 i 行第j 列的元素 aij的余子式 Mij是指去掉第i行和第j列后得到的 (n−1)×(n−1) 子矩阵的行列式;余子式的一个重要应用是计算行列式的值,行列式 det⁡(A)等于任意一行或一列的元素与其对应的余子式的乘积(代数余子式)的累计之和。

        代数余子式  给定一个 n×n 的矩阵 A,其第i行第j列的元素 aij 的代数余子式 Cij定义为:   C_{ij} ={-1}^{i+j} ⋅M_{ij}

例如:对于一个 3×3的矩阵

元素 a11的代数余子式 C11 = {-1}^{(1+1)} * M_{11}=M_{11}

        拉普拉斯展开定理  行列式等于它的某一行元素与其代数余子式的乘积之和 (det⁡(A) = a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}

2、克莱姆法则

        假设有一个由 n 个线性方程组成的n 元线性方程组如下,可以将方程组写成 AX=B(不存在部分系数等于0);

        

相关文章:

线性代数 行列式

一、行列式 1、定义 一个数学概念,主要用于 线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值) 2、二阶行列式 ,像这样将一个式子收缩称为一个 2*2 的…...

Ubuntu 通过 Docker 搭建 GitLab

准备工作 1.)更新软件。确保你的系统是最新 sudo apt update sudo apt upgrade -y 2.)安装 Docker 和 Docker Compose。 参考:Ubuntu 上安装 Docker-CSDN博客 1. 创建 GitLab 目录 创建一个用于存储 GitLab 数据和配置的目录&#xff1…...

原来CDC数据同步可以这么简单,零代码可视化一键数据同步

当前企业实时同步与分析场景中面临的挑战: 随着业务发展需要,实时分析成为企业目前的强需求,成为支撑企业业务发展的必须项。 一般来说,要满足数据实时分析的诉求,通常有两种方案: 第一种是直接使用源端…...

Ubuntu环境使用 Whisper 与 ZhipuAI 实现本地批量视频转录与文本标点复原(本地亲测可用)

使用 Whisper 与 ZhipuAI 实现批量视频转录与文本标点添加 在本篇博客中,我们将介绍一个实用的项目,帮助初学者了解如何使用 Whisper 和 ZhipuAI 的 API 来进行视频转录和文本处理。这个项目主要功能是将视频转录成文本,并利用大语言模型为转…...

SPI机制

一、SPI简介 SPI(Service Provider Interface)机制是一种服务发现机制,广泛用于Java生态中。它允许框架或库通过接口解耦具体实现,用户可以在运行时动态地提供接口的实现,而不是在编译时确定。这种机制在很多场景下非…...

生信分析流程:从数据准备到结果解释的完整指南

介绍 生物信息学(生信)分析是一个复杂的过程,涉及从数据准备到结果解释的多个步骤。随着高通量测序技术的发展和生物数据的迅猛增长,了解和掌握生信分析的标准流程变得尤为重要。这不仅有助于提高分析的准确性,还能优…...

golang语法

参考链接&#xff1a;https://www.runoob.com/go/ 创建变量 // 3种方法 var a int a : 10 // 类型推断 a : make() // 复合类型循环 // 3种循环 for i : 0; i < 10; i {// 循环体} // 传统for循环 for index, num : range nums {// 循环体} // nums是可迭代的复合类型…...

【fisco学习记录2】多群组搭建

说明 文档参考&#xff1a; 多群组部署 — FISCO BCOS 2.0 v2.11.0 文档 (fisco-bcos-documentation.readthedocs.io) 多群组搭建之前&#xff0c;先暂停之前的单群组&#xff0c;并删除&#xff1a; cd fisco bash nodes/127.0.0.1/stop_all.sh rm -rf nodes/ 实现图&…...

深度解读:路由交换、负载均衡与防火墙的网络交响

一、路由交换&#xff1a;网络流动的“大动脉” 1. 路由&#xff1a;决定命运的“路径规划师” 路由技术如同现代交通网络中的导航系统&#xff0c;决定了数据从起点到终点的最佳路径。路由器基于网络层IP地址&#xff0c;对每个数据包进行精确的路径选择&#xff0c;并确保其…...

linux线程 | 线程的控制(二)

前言&#xff1a; 本节内容是线程的控制部分的第二个小节。 主要是列出我们的线程控制部分的几个细节性问题以及我们的线程分离。这些都是需要大量的代码去进行实验的。所以&#xff0c; 准备好接受新知识的友友们请耐心观看。 现在开始我们的学习吧。 ps:本节内容适合了解线程…...

npm install报错一堆sass gyp ERR!

执行npm install &#xff0c;出现一堆gyp含有sass错误的情况下。 解决办法&#xff1a; 首页可能是node版本问题&#xff0c;太高或者太低&#xff0c;也会导致npm install安装错误&#xff08;不会自动生成node_modules文件&#xff09;&#xff0c;本次试验&#xff0c;刚开…...

微知-BlueField DPU在lspci中显示Flash Recovery是什么意思?

效果&#xff1a; lspci |grep BlueField10:00.0 Memory controller: Mellanox Technologies MT42822 Family [BlueField-2 SoC Flash Recovery] (rev 01)*原因&#xff1a; 表示此时flash是empty空的&#xff0c;或者在flash中的FW是无法工作的。比如烧录错误。 这里指的一提…...

【前端知识点】前端笔记

css 引入css文件的文件路径 <!-- 引入外部 CSS 文件 --> <!-- 当前文件所在文件夹目录 --> <link rel"stylesheet" href"./"> <!-- 当前文件所在父文件夹目录 --> <link rel"stylesheet" href"../">j…...

Sping Cache 使用详解

缓存是提升应用性能的常用手段。它通过将耗时的操作结果存储起来&#xff0c;下次请求可以直接从缓存中获取&#xff0c;从而避免重复计算或查询数据库&#xff0c;显著减少响应时间和服务器负载。Spring 框架提供了强大的缓存抽象 Spring Cache&#xff0c;它简化了缓存的使用…...

动手学深度学习60 机器翻译与数据集

1. 机器翻译与数据集 import os import torch from d2l import torch as d2l#save d2l.DATA_HUB[fra-eng] (d2l.DATA_URL fra-eng.zip,94646ad1522d915e7b0f9296181140edcf86a4f5)#save def read_data_nmt():"""载入“英语&#xff0d;法语”数据集"&qu…...

Python网络爬虫技术

Python网络爬虫技术详解 引言 网络爬虫&#xff08;Web Crawler&#xff09;&#xff0c;又称网络蜘蛛&#xff08;Web Spider&#xff09;或网络机器人&#xff08;Web Robot&#xff09;&#xff0c;是一种按照一定规则自动抓取互联网信息的程序或脚本。它们通过遍历网页链…...

黑马程序员-redis项目实践笔记1

目录 一、 基于Session实现登录 发送验证码 验证用户输入验证码 校验登录状态 Redis代替Session登录 发送验证码修改 验证用户输入验证码 登录拦截器的优化 二、 商铺查询缓存 缓存更新策略 数据库和缓存不一致解决方案 缓存更新策略的最佳实践方案 实现商铺缓…...

ES-入门聚合查询

url 请求地址 http://192.168.1.108:9200/shopping/_search {"aggs": { //聚合操作"price_group":{ //名称,随意起名"terms":{ //分组"field": "price" //分组字段}}} } 查询出来的结果是 查询结果中价格的平均值 {&q…...

七维大脑: 探索人类认知的未来之路

七维大脑&#xff1a; 探索人类认知的未来之路 随着科技的不断发展&#xff0c;人们对于大脑的认知也在不断扩展。近年来&#xff0c;科学家们提出了一个名为“七维大脑”的概念&#xff0c;试图通过七个维度来理解人类的认知过程。这个概念的提出&#xff0c;让人们开始思考&…...

spring |Spring Security安全框架 —— 认证流程实现

文章目录 开头简介环境搭建入门使用1、认证1、实体类2、Controller层3、Service层3.1、接口3.2、实现类3.3、实现类&#xff1a;UserDetailsServiceImpl 4、Mapper层3、自定义token认证filter 注意事项小结 开头 Spring Security 官方网址&#xff1a;Spring Security官网 开…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...