线性代数 行列式
一、行列式
1、定义
一个数学概念,主要用于 线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值)
2、二阶行列式
,
像这样将一个式子收缩称为一个 2*2 的表达形式
二阶行列式计算:对角线法,左上到右下(主对角线)减去右上到左下(副对角线)
3、三阶行列式
对角线法则计算:
4、n阶行列式
4.1、排列
从一组元素中选出若干个元素,并按照一定的顺序排列起来。对于一个包含 n 个元素的集合,其所有元素的全排列数目是 n!(即 n 的阶乘)
4.2、逆序
如果一个较大的数排在一个较小的数前面,则称这两个数构成一个逆序;逆序的总数称为逆序数;逆序数可以帮助我们理解排列的“混乱”程度。
例如,在排列 (3,1,4,2) 中,逆序有: 3 和 1 构成一个逆序、3 和 2 构成一个逆序、4 和 2 构成一个逆序;这个排列的逆序数是 3;逆序的表示符号为N或者为τ(读作涛)
4.3、奇排列和偶排列
如果一个排列的逆序数是奇数,则称该排列为奇排列;如果是偶数,则称该排列为偶排列。
例如:N(1432) = 3,则 (1432) 为奇排列;N(4321)=6,则 (4321) 为偶排列。
4.4、对换
排列中的任意两个元素进行交换(称为对换),会改变排列的奇偶性。例如:N(651243) = 10,为偶排列,将5和1兑换,则 N(615243) = 9,为奇排列。
4.5、行列式展开
按行展开
3阶行列式按行展开后为6项,每项为3个不同行不同列的3个元素相乘,aij元素的行标i都是123的自然排列,aij元素列标j则为:123、231、312、321、213、132,总数为3!=6(保证 按照行顺序进行,则逆序数就可用列顺序排列即可 )
分别计算列标排列的逆序数:
N(123) = 0 偶数
N(231) = 1 + 1 = 2 偶数
N(312) = 2 偶数
N(321) = 2 + 1 = 3 奇数
N(213) = 1 奇数
N(132) = 1 奇数
通过观察公式可以看出,逆序数为偶数的排列的运算符号为+
,为奇数的排列的运算符号为-
总结:
1.行标取自然排列(一般以第一行为准,按照从左到右依次排队)
2.不同行不同列的3个元素相乘 (第一行取了第一列的数据,那么第二行的数据只能从第二列或第三列获取)
3.列标取排列的所有可能 (第一行取了第一列的数据,那么就产生两种数据 ,或者
,同理类推,在第一个确定的情况,后面只会有两种排列)
4.列标排列的逆序数的奇偶性决定运算符号,逆序数为偶数的运算符号为+
,奇数的运算符号为-
那么得到n阶行列式的表达式为
也就是挨个列举第一行的值乘上排列得到值的累加之和;使用逆序数来判断符号。
例如:
按列展开
同按行展开,列标按顺序获取,列举所有可能行标,判断行标的逆序数,将所有可能值相机得到最终结果
4.6、特殊n阶行列式
行列式某一行(列)全为0,则行列式为0;
三角形行列式等于对角线元素的乘积(逆序数判断正负号 ,主对角线为正、副对角线为负);
二、行列式性质
1、行列式的转置等于行列式本身 =
2、交换行列式的两行(任意行列)会导致行列式的值变为其原来的相反数;
3、行列式两行(列)相等,则行列式为0;
4、用k乘以行列式某一行的所有元素,等于用k乘以行列式;
5、如果一个行列式的两行(或两列)对应成比例,那么这个行列式的值必定为零。(与3类似)
6、如果一个行列式的某一行(或某一列)是两个数之和,那么这个行列式可以表示为两个行列式的和 det(A)=det(B)+det(C)
7、将行列式的某一行(列)乘以一个数加到另一行(列)上,行列式的值保持不变。(切记,归根结底是行列式的行相加或者列相加,不是行乘外来数值赋值到本行列式)
三、行列式扩展
1、代数余子式
余子式 给定一个 n×n的矩阵 A,其第 i 行第j 列的元素 aij的余子式 Mij是指去掉第i行和第j列后得到的 (n−1)×(n−1) 子矩阵的行列式;余子式的一个重要应用是计算行列式的值,行列式 det(A)等于任意一行或一列的元素与其对应的余子式的乘积(代数余子式)的累计之和。
代数余子式 给定一个 n×n 的矩阵 A,其第i行第j列的元素 aij 的代数余子式 Cij定义为: =
⋅
例如:对于一个 3×3的矩阵
元素 a11的代数余子式 C11 = *
=
拉普拉斯展开定理 行列式等于它的某一行元素与其代数余子式的乘积之和 (det(A) = +
+
)
2、克莱姆法则
假设有一个由 n 个线性方程组成的n 元线性方程组如下,可以将方程组写成 AX=B(不存在部分系数等于0);
相关文章:

线性代数 行列式
一、行列式 1、定义 一个数学概念,主要用于 线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值) 2、二阶行列式 ,像这样将一个式子收缩称为一个 2*2 的…...
Ubuntu 通过 Docker 搭建 GitLab
准备工作 1.)更新软件。确保你的系统是最新 sudo apt update sudo apt upgrade -y 2.)安装 Docker 和 Docker Compose。 参考:Ubuntu 上安装 Docker-CSDN博客 1. 创建 GitLab 目录 创建一个用于存储 GitLab 数据和配置的目录࿱…...

原来CDC数据同步可以这么简单,零代码可视化一键数据同步
当前企业实时同步与分析场景中面临的挑战: 随着业务发展需要,实时分析成为企业目前的强需求,成为支撑企业业务发展的必须项。 一般来说,要满足数据实时分析的诉求,通常有两种方案: 第一种是直接使用源端…...
Ubuntu环境使用 Whisper 与 ZhipuAI 实现本地批量视频转录与文本标点复原(本地亲测可用)
使用 Whisper 与 ZhipuAI 实现批量视频转录与文本标点添加 在本篇博客中,我们将介绍一个实用的项目,帮助初学者了解如何使用 Whisper 和 ZhipuAI 的 API 来进行视频转录和文本处理。这个项目主要功能是将视频转录成文本,并利用大语言模型为转…...
SPI机制
一、SPI简介 SPI(Service Provider Interface)机制是一种服务发现机制,广泛用于Java生态中。它允许框架或库通过接口解耦具体实现,用户可以在运行时动态地提供接口的实现,而不是在编译时确定。这种机制在很多场景下非…...

生信分析流程:从数据准备到结果解释的完整指南
介绍 生物信息学(生信)分析是一个复杂的过程,涉及从数据准备到结果解释的多个步骤。随着高通量测序技术的发展和生物数据的迅猛增长,了解和掌握生信分析的标准流程变得尤为重要。这不仅有助于提高分析的准确性,还能优…...
golang语法
参考链接:https://www.runoob.com/go/ 创建变量 // 3种方法 var a int a : 10 // 类型推断 a : make() // 复合类型循环 // 3种循环 for i : 0; i < 10; i {// 循环体} // 传统for循环 for index, num : range nums {// 循环体} // nums是可迭代的复合类型…...

【fisco学习记录2】多群组搭建
说明 文档参考: 多群组部署 — FISCO BCOS 2.0 v2.11.0 文档 (fisco-bcos-documentation.readthedocs.io) 多群组搭建之前,先暂停之前的单群组,并删除: cd fisco bash nodes/127.0.0.1/stop_all.sh rm -rf nodes/ 实现图&…...
深度解读:路由交换、负载均衡与防火墙的网络交响
一、路由交换:网络流动的“大动脉” 1. 路由:决定命运的“路径规划师” 路由技术如同现代交通网络中的导航系统,决定了数据从起点到终点的最佳路径。路由器基于网络层IP地址,对每个数据包进行精确的路径选择,并确保其…...

linux线程 | 线程的控制(二)
前言: 本节内容是线程的控制部分的第二个小节。 主要是列出我们的线程控制部分的几个细节性问题以及我们的线程分离。这些都是需要大量的代码去进行实验的。所以, 准备好接受新知识的友友们请耐心观看。 现在开始我们的学习吧。 ps:本节内容适合了解线程…...

npm install报错一堆sass gyp ERR!
执行npm install ,出现一堆gyp含有sass错误的情况下。 解决办法: 首页可能是node版本问题,太高或者太低,也会导致npm install安装错误(不会自动生成node_modules文件),本次试验,刚开…...
微知-BlueField DPU在lspci中显示Flash Recovery是什么意思?
效果: lspci |grep BlueField10:00.0 Memory controller: Mellanox Technologies MT42822 Family [BlueField-2 SoC Flash Recovery] (rev 01)*原因: 表示此时flash是empty空的,或者在flash中的FW是无法工作的。比如烧录错误。 这里指的一提…...
【前端知识点】前端笔记
css 引入css文件的文件路径 <!-- 引入外部 CSS 文件 --> <!-- 当前文件所在文件夹目录 --> <link rel"stylesheet" href"./"> <!-- 当前文件所在父文件夹目录 --> <link rel"stylesheet" href"../">j…...
Sping Cache 使用详解
缓存是提升应用性能的常用手段。它通过将耗时的操作结果存储起来,下次请求可以直接从缓存中获取,从而避免重复计算或查询数据库,显著减少响应时间和服务器负载。Spring 框架提供了强大的缓存抽象 Spring Cache,它简化了缓存的使用…...
动手学深度学习60 机器翻译与数据集
1. 机器翻译与数据集 import os import torch from d2l import torch as d2l#save d2l.DATA_HUB[fra-eng] (d2l.DATA_URL fra-eng.zip,94646ad1522d915e7b0f9296181140edcf86a4f5)#save def read_data_nmt():"""载入“英语-法语”数据集"&qu…...
Python网络爬虫技术
Python网络爬虫技术详解 引言 网络爬虫(Web Crawler),又称网络蜘蛛(Web Spider)或网络机器人(Web Robot),是一种按照一定规则自动抓取互联网信息的程序或脚本。它们通过遍历网页链…...

黑马程序员-redis项目实践笔记1
目录 一、 基于Session实现登录 发送验证码 验证用户输入验证码 校验登录状态 Redis代替Session登录 发送验证码修改 验证用户输入验证码 登录拦截器的优化 二、 商铺查询缓存 缓存更新策略 数据库和缓存不一致解决方案 缓存更新策略的最佳实践方案 实现商铺缓…...

ES-入门聚合查询
url 请求地址 http://192.168.1.108:9200/shopping/_search {"aggs": { //聚合操作"price_group":{ //名称,随意起名"terms":{ //分组"field": "price" //分组字段}}} } 查询出来的结果是 查询结果中价格的平均值 {&q…...
七维大脑: 探索人类认知的未来之路
七维大脑: 探索人类认知的未来之路 随着科技的不断发展,人们对于大脑的认知也在不断扩展。近年来,科学家们提出了一个名为“七维大脑”的概念,试图通过七个维度来理解人类的认知过程。这个概念的提出,让人们开始思考&…...

spring |Spring Security安全框架 —— 认证流程实现
文章目录 开头简介环境搭建入门使用1、认证1、实体类2、Controller层3、Service层3.1、接口3.2、实现类3.3、实现类:UserDetailsServiceImpl 4、Mapper层3、自定义token认证filter 注意事项小结 开头 Spring Security 官方网址:Spring Security官网 开…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...

算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...

小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...