Superset SQL模板使用
使用背景
有时想让表的时间索引生效,而不是在最外层配置报表时,再套多一层时间范围。这时可以使用SQL模板
参考官方文档
https://superset.apache.org/docs/configuration/sql-templating/#:~:text=SQL%20Lab%20and%20Explore%20supports%20Jinja
我的实践
1、定义一个dataset,其中我的dt是由外围dashboard的筛选项传进来的
select dt, team, sum(xx) xx
from t_test
where dt in ({{ "'" + "','".join(filter_values('dt')) + "'" }})
group by 1,2
为了防止保存dataset报错,你的dataset dt字段可以设置一个无效filter。比如我设置了no filter

2、dashboard定义filter。

保存后,superset会自动将用户选择的dt变量带进sql。生成的sql将是:
select dt, team, sum(xx) xx
from t_test
where dt in where dt in ('2024-10-07', 'No filter')
group by 1,2
这样便可以实现在内层让数据源使用索引
相关文章:
Superset SQL模板使用
使用背景 有时想让表的时间索引生效,而不是在最外层配置报表时,再套多一层时间范围。这时可以使用SQL模板 参考官方文档 https://superset.apache.org/docs/configuration/sql-templating/#:~:textSQL%20Lab%20and%20Explore%20supports%20Jinja 我…...
算法工程师重生之第二十七天(合并区间 单调递增的数字 监控二叉树 总结)
参考文献 代码随想录 一、合并区间 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 示例 1:…...
前端开发基础NodeJS+NPM基本使用(零基础入门)
文章目录 1、Nodejs基础1.1、NodeJs简介1.2、下载安装文件1.3、安装NodeJS1.4、验证安装2、Node.js 创建第一个应用2.1、说明2.2、创建服务脚本2.3、执行运行代码2.4、测试访问3、npm 基本使用3.1、测试安装3.2、配置淘宝npm镜像3.3.1、本地安装3.3.2、全局安装3.4、查看安装信…...
深度学习 nd.random.normal()
nd.random.normal() 是 MXNet 中用于生成符合正态分布(高斯分布)随机数的函数。它允许用户指定均值、标准差以及生成的随机数的形状。 函数签名 mx.nd.random.normal(loc0.0, scale1.0, shape(1,)) 参数 loc: 生成的随机数的均值,默认为 …...
Redis Geo 数据类型解析:基于 ZSET 的高效地理位置管理0708
根据官网介绍: Bitmaps are not an actual data type, but a set of bit-oriented operations defined on the String type which is treated like a bit vector. Since strings are binary safe blobs and their maximum length is 512 MB, they are suitable to s…...
爬虫post收尾以及cookie加代理
爬虫post收尾以及cookie加代理 目录 1.post请求收尾 2.cookie加代理 post收尾 post请求传参有两种格式,载荷中有请求载荷和表单参数,我们需要做不同的处理。 1.表单数据:data字典传参 content-type: application/x-www-form-urlencoded; …...
c++STL——map与set的使用及介绍
目录 前言: 1. 关联式容器 2. 键值对 3. 树形结构的关联式容器 3.1 set 3.1.1 set的介绍 3.1.2 set的使用 1. set的模板参数列表 2. set的构造 3. set的迭代器 4. set的容量 5. set修改操作 6. set的使用举例 3.2 map 3.2.1 map的介绍 3.2.2 map的…...
Vxe UI vue vxe-table select 下拉框选项列表数据量超大过大时卡顿解决方法
Vxe UI vue vxe-table vxe-grid select 下拉框选项列表数据量超大过大时卡顿解决方法 查看 github vxe-table 官网 vxe-table 本身支持虚拟滚动,数据量大也是支持的,但是如果在可编辑表格中使用下拉框,下拉框的数据量超大时,可能…...
python 基础笔记(其实有点内容的)
print(math.gamma(n)) # 求 (n-1) 的阶乘 数值, 数值计算 format(50, “b”) bin(50)[2:], 这个“b” 就代表的是 binary format(14, ‘b’) ------> ‘1110’ 去除 0b 去掉前导零 str(000001) # 只适合python2.x ‘1’ “00000001”.lstrip(“0”) # python3…...
(39)MATLAB生成高斯脉冲及其频谱
文章目录 前言一、MATLAB仿真代码二、仿真结果画图 前言 高斯脉冲在通信中是很重要的调制符号波形,本文使用MATLAB生成高斯脉冲,并使用FFT变换给出其频谱。 一、MATLAB仿真代码 代码如下: % 信号参数 fs 100; % 采样…...
35岁前端开发者:转型还是坚守?
在互联网行业,35岁似乎成了一个敏感的年龄分水岭。很多前端开发者开始思考:到了35岁,是不是都要转型?本文将探讨这个话题,希望能为面临这一困惑的前端开发者提供一些参考。 一、35岁焦虑:现实还是误解&…...
对MVC详细解读
一、MVC模式的详细组成部分 1. 模型(Model) 数据结构: 模型通常使用类或结构来定义应用程序的数据结构。例如,在Ruby on Rails中,模型通常与数据库表相对应,使用Active Record模式。 数据访问层࿱…...
centos系列图形化 VNC server配置,及VNC viewer连接,2024年亲测有效
centos系列图形化 VNC server配置,及VNC viewer连接 0.VNC服务介绍 VNC英文全称为Virtual Network Computing,可以位操作系统提供图形接口连接方式,简单的来说就是一款桌面共享应用,类似于qq的远程连接。该服务是基于C/S模型的。…...
STL序列式容器之string的基本用法及实现
1.string类 在使用string类时,必须包含<string>头文件以及using namespace std; 接下来我们看看string类是如何被声明的: typedef basic_string<char> string; 可以看到:string类是被类模板basic_string用数据类型…...
lua脚本使用cjson转换json时,空数组[]变成了空对象{}
一、前言 项目lua使用工具:cjson 问题:reids中部分数据的json key存在为[]的值,使用cjson进行解析的时候将原本空数组[]解析成了空对象{} 目标:原本[] 转 [] 二、解决方案 在使用cjson类库时,先配置json转换要求 -…...
ImportError: /../lib/libstdc++.so.6: version `GLIBCXX_3.4.29解决方案
今天跑实验遇到了一个头疼的报错,完全看不懂,上网查了一下成功解决,但是网上的指令没法直接拿来用,所以在这里记录一下自己的解决方案。 报错信息: Traceback (most recent call last):File "/home/shizhiyuan/c…...
java-实现一个简单的httpserver-0.6.0
2024年10月14日14:17:07—0.6.0 java-实现一个简单的httpserver-0.6.0 背景功能具体代码打印 背景 通常写了一些接口,需要通过临时的http访问,又不需要spring这么厚重的框架 功能 设置并发监控并发两个get请求一个是根路径,一个是other增加…...
【论文#码率控制】ADAPTIVE RATE CONTROL FOR H.264
目录 摘要1.前言2.基本知识2.1 蛋鸡悖论2.2 基本单元的定义2.3 线性MAD预测模型 3.GOP级码率控制3.1 总比特数3.2 初始化量化参数 4.帧级码率控制4.1 非存储图像的量化参数4.2 存储图像的目标比特 5.基本单元级码率控制6.实验结果7.结论 《ADAPTIVE RATE CONTROL FOR H.264》 A…...
2024-10-16 学习人工智能的Day8
函数 定义(创建) 函数的创建def开始,后接函数名,在给参数表最后冒号表示函数基础信息给定 换行书写函数内部定义,在函数内部定义操作,最后函数自带返回,无定义返回值返回为None&…...
Python Django 数据库优化与性能调优
Python Django 数据库优化与性能调优 Django 是一个非常流行的 Python Web 框架,它的 ORM(对象关系映射)允许开发者以简单且直观的方式操作数据库。然而,随着数据量的增长,数据库操作的效率可能会成为瓶颈,…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
