当前位置: 首页 > news >正文

VAE(与GAN)

VAE

1. VAE 模型概述

变分自编码器(Variational Autoencoder, VAE)是一种生成模型,主要用于学习数据的潜在表示并生成新样本。它由两个主要部分组成:编码器和解码器。

  • 编码器:将输入数据映射到潜在空间,输出潜在变量的均值(µ)和对数方差(log(σ²))。
  • 重参数化:从编码器输出的分布中采样,以便进行反向传播。
  • 解码器:将潜在变量映射回数据空间,生成新的样本。

2. VAE 模型结构图

        +---------------------+|     Input Data     |+---------------------+|v+---------------------+|      Encoder        ||  (Neural Network)   |+---------------------+|v+-------------------+|    Mean (µ)      |+-------------------+||         +-------------------+|---------|  Log Variance     ||         +-------------------+|v+-------------------+|   Reparameterize   |+-------------------+|v+---------------------+|      Latent Space   |+---------------------+|v+---------------------+|      Decoder        ||  (Neural Network)   |+---------------------+|v+---------------------+|   Reconstructed Data |+---------------------+

3. 关键步骤

  1. 输入数据:例如图像或其他类型的数据。
  2. 编码:通过编码器将输入转换为潜在空间的均值和对数方差。
  3. 重参数化:通过均值和方差,生成潜在变量,确保梯度可以传递。
  4. 解码:使用潜在变量生成重构的数据。

4. 损失函数

VAE 的损失函数由两部分组成:

  1. 重构损失:衡量输入和重构数据之间的差异,例如使用二元交叉熵。
  2. Kullback-Leibler 散度:衡量潜在分布与标准正态分布之间的差异。

5. 应用场景

  • 图像生成
  • 数据降维
  • 半监督学习

6. 生成示例

使用 VAE 可以生成新的、类似于训练数据的样本。例如,训练在 MNIST 数据集上的 VAE 可以生成手写数字图像。

总结

VAE 是一种强大的工具,通过有效地学习数据的潜在表示,使得生成新样本变得可行。它结合了深度学习和概率图模型的优点。

GAN和VAE

使用生成对抗网络(GAN)同样可以生成类似于训练数据的样本,比如手写数字图像。虽然 VAE 和 GAN 都是生成模型,用于生成新的数据样本,但它们在结构、训练方法和生成机制上有一些重要区别。

1. 结构

  • VAE:
    • 包含两个主要部分:编码器和解码器。
    • 编码器将输入映射到潜在空间,输出均值和方差。
    • 从潜在空间中采样后,解码器生成重构数据。
  • GAN:
    • 包含两个主要部分:生成器和判别器。
    • 生成器从随机噪声中生成样本。
    • 判别器判断样本是真实的还是生成的,生成器的目标是欺骗判别器。

2. 训练方法

  • VAE:
    • 使用变分推断,通过最小化重构损失和 Kullback-Leibler 散度来优化模型。
    • 损失函数可分解为两部分,确保生成的数据与真实数据相似,同时潜在空间遵循标准正态分布。
  • GAN:
    • 采用对抗训练的方式,通过生成器和判别器之间的博弈进行优化。
    • 生成器试图最大化判别器的错误率,而判别器则试图最小化错误率。

3. 生成机制

  • VAE:
    • 生成过程是通过潜在空间的均值和方差进行采样,具有一定的随机性。
    • 生成的样本通常更平滑,但可能缺乏细节。
  • GAN:
    • 生成过程基于给定的随机噪声,生成的样本通常质量较高且细节丰富。
    • GAN 可能会出现模式崩溃(mode collapse),即生成的样本多样性不足。

4. 应用场景

  • VAE:适用于需要控制潜在空间表示的任务,如特征学习和数据插值。
  • GAN:适用于需要高保真生成结果的任务,如图像生成和图像转换。

总结

总的来说,VAE 和 GAN 都各有优缺点,选择哪个模型取决于具体的应用需求和目标。VAE 更适合需要稳健性和简单性的方法,而 GAN 则在生成高质量、细节丰富的样本方面表现更好。

相关文章:

VAE(与GAN)

VAE 1. VAE 模型概述 变分自编码器(Variational Autoencoder, VAE)是一种生成模型,主要用于学习数据的潜在表示并生成新样本。它由两个主要部分组成:编码器和解码器。 编码器:将输入数据映射到潜在空间,…...

【高等数学】多元微分学(二)

隐函数的偏导数 二元方程的隐函数 F ( x , y ) 0 F(x,y)0 F(x,y)0 推出隐函数形式 y y ( x ) yy(x) yy(x). 欲求 d y d x \frac{d y}{d x} dxdy​ 需要对 F 0 F0 F0 两边同时对 x x x 求全导 0 d d x F ( x , y ( x ) ) ∂ F ∂ x d x d x ∂ F ∂ y d y d x ∂ F…...

.NET 中的 Web服务(Web Services)和WCF(Windows Communication Foundation)

一、引言 在当今数字化时代,不同的软件系统和应用程序之间需要进行高效、可靠的通信与数据交换。.NET 框架中的 Web 服务和 WCF(Windows Communication Foundation)为此提供了强大的技术支持。它们在构建分布式应用程序、实现跨平台通信以及…...

Linux小知识2 系统的启动

我们在上文中介绍了文件系统,提到了Linux的文件系统存在一个块的概念,其中有一个特殊的块:引导块。这和我们这里要讲的系统启动有关。 BIOS 基本输入输出系统,基本上是一个操作系统最早实现也是最早运行的第一个程序。是一个比较…...

Oracle-19g数据库的安装

简介 Oracle是一家全球领先的数据库和云解决方案提供商。他们提供了一套完整的技术和产品,包括数据库管理系统、企业级应用程序、人工智能和机器学习工具等。Oracle的数据库管理系统是业界最受欢迎和广泛使用的数据库之一,它可以管理和存储大量结构化和…...

Dubbo快速入门(二):第一个Dubbo程序(附源码)

文章目录 一、生产者工程0.目录结构1.依赖2.配置文件3.启动类4.生产者服务 二、消费者工程0.目录结构1.依赖2.配置文件3.启动类4.服务接口5.controller接口 三、测试代码 本博客配套源码:gitlab仓库 首先,在服务器上部署zookeeper并运行,可以…...

不同数据类型转换与转义的对比差异

(Owed by: 春夜喜雨 http://blog.csdn.net/chunyexiyu) 在C和C语言中,类型转换与转义是有点像的,有时可能被误解,这块需要仔细辨别。 类型转换形如,把不同字节数或相同字节数的类型值进行转换,强调的是数值转换过去&…...

Kylin系统安装VMwareTools工具

如下图所示,安装好Kylin系统之后,还未安装VMwareTools工具,导致系统画面无法填充虚拟机 正常安装了VMwareTools工具后的系统画面 所以,接下来我们介绍一下如何在Kylin系统下安装VMwareTools工具 首先,点击VMware工具栏…...

uni-app 拍照图片添加水印

获取图片信息 uni.chooseImage({count: 6, //默认9sizeType: ["original", "compressed"], //可以指定是原图还是压缩图,默认二者都有sourceType: ["camera"], //从相册选择success: async function (result: any) {if (!props.isMar…...

Docker-registry私有镜像仓库的安装

Docker-registry私有镜像仓库的安装 我在这里的镜像仓库搭建在ip为192.168.3.23的虚机中。 安装docker-registry 1.拉取镜像 # docker pull registry 2.查看镜像 # docker images REPOSITORY TAG IMAGE ID CREATE…...

在vue3中实现祖组件给后代组件传参,可以跨域几层。

使用provide和inject就可以 下面是祖组件代码: //这是祖组件// 引入provide import { provide } from "vue";//定义数据 const projectId ref("");// 给后代组件传参 provide("projectId", projectId); 下面是后代组件代码&#…...

【优选算法】——双指针(上篇)!

🌈个人主页:秋风起,再归来~🔥系列专栏:C刷题算法总结🔖克心守己,律己则安 目录 前言:双指针 1. 移动零(easy) 2. 复写零(easy) 3…...

【C语言】数据输出格式控制

数据的输出格式修饰 常用两种&#xff1a; 整型中&#xff0c;输出数据左对齐、右对齐、占m位、不足m位前补0。浮点型中&#xff0c;默认通过四舍五入保留小数点后6位&#xff0c;通过参数设置保留小数点后n位。 #include <stdio.h> #define PI 3.14159 /* 功能&#x…...

Qt-界面优化选择器的用法(70)

目录 描述 使用 类型选择器 ID 选择器 并集选择器 子控件选择器 伪控制器 描述 QSS 的选择器⽀持以下⼏种 选择器⽰例说明全局选择器*选择所有的 widget.类型选择器 (type selector)QPushButton选择所有的 QPushButton 和其⼦类的控件.类选择器 (class selector).QPus…...

全国职业技能大赛——信息安全管理与评估第一阶段BC、FW、WAF题目详细解析过程

💗需要职业技能大赛环境+WP,请联系我!🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 一个想当文人的黑客 ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【edusrc漏洞挖掘】 【VulnHub靶场复现】【面试分析】 🎉欢迎关注💗一起学习👍一起讨论⭐️一起…...

基于Vite创建项目

vite 是新一代前端构建工具&#xff0c;官网地址&#xff1a;https://vitejs.cn&#xff0c;vite的优势如下&#xff1a; 轻量快速的热重载&#xff08;HMR&#xff09;&#xff0c;能实现极速的服务启动。对 TypeScript、JSX、CSS 等支持开箱即用。真正的按需编译&#xff0c…...

面试题:在 React 中如何绑定事件

在 React 中绑定事件处理器(event handlers)是一个常见的任务,通常涉及以下几个步骤: 定义一个事件处理器函数:在组件的类或者函数组件内部定义一个处理事件的函数。 在 JSX 中绑定事件处理器:在渲染 JSX 时,使用 on 前缀加上事件名称(如 onClick, onChange, onSubmit …...

前端将JSON或者table直接导出为excel

一、引入Sheetjs或者npm直接下载 <script lang"javascript" src"https://cdn.sheetjs.com/xlsx-0.20.3/package/dist/xlsx.full.min.js"></script> 二、页面中使用 //json导出为excel <button onclick"exportExcel()">导出…...

算法之排序

概述 记录排序算法。 1 选择排序 *** 选择排序* 思路&#xff1a;遍历数组&#xff0c;找出&#xff08;选择&#xff09;最小的元素&#xff0c;然后和最左边的元素交换。接下来&#xff0c;再从第二个元素开始遍历整个数组。再找到最小的元素&#xff0c;再和第二个元素交换…...

深度学习:LSTM循环神经网络实现评论情感分析

目录 一、任务介绍 1.任务要求 2.信息内容 3.待思考问题 二、问题解决 1.将评论内容转换成语料库 2.获取每条评论的词向量、标签和长度 3.数据打包 4.建立LSTM循环神经网络模型 1.主程序代码 2.模型代码 5.建立训练集函数和测试集函数 一、任务介绍 1.任务要求 项…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...