当前位置: 首页 > news >正文

CentOS安装NVIDIA驱动、CUDA以及nvidia-container-toolkit

0.提前准备
0.1.更新yum源(以阿里为例)
0.1.1 备份当前的yum源

mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup

0.1.2 下载新的CentOS-Base.repo 到/etc/yum.repos.d/

CentOS 5

wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-5.repo
或者
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-5.repo

CentOS 6

wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-6.repo
或者
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-6.repo

CentOS 7 

wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
或者
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo

0.1.3 清空并生成缓存    

yum clean all
yum makecache

备注:
yum 会把下载的软件包和header存储在cache中(默认路径/var/cache/yum/),而不自动删除。如果觉得占用磁盘空间,可以使用yum clean指令进行清除,更精确 的用法是yum clean headers清除header,yum clean packages清除下载的rpm包,yum clean all全部清除。
———————————————————————————————————————————

1.安装依赖项

yum -y install gcc pciutils
yum -y install gcc
yum -y install gcc-c++
yum -y install make

2.查看内核版本

uname -a

3.查看显卡版本

lspci | grep -i nvidia

4.屏蔽系统自带的nouveau

(1)查看nouveau
lsmod | grep nouveau 
(2)打开blacklist.nf文件,按i或insert键进入修改模式
vi /lib/modprobe.d/dist-blacklist.conf   
(3)将nvidiafb注释掉:
#blacklist nvidiafb
(4)添加以下两句在blacklist.conf  文件中, :回到文件最底部,:w保存文件,:q退出文件
blacklist nouveau
options nouveau modeset=0

5.重建initramfs image步骤

(1)删除
mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
(2)重建
dracut /boot/initramfs-$(uname -r).img $(uname -r)

6.修改运行级别为文本模式

systemctl set-default multi-user.target

7.重新启动

reboot

8.下载显卡驱动和cuda


打开链接:https://www.nvidia.cn/drivers/lookup/
下载完后,进入下载后的文件夹,在终端输入安装指令:

根据自己的显卡型号下载对应驱动,然后安装:
sudo sh NVIDIA-Linux-x86_64-550.120.run

cuda的下载,可以用wget,也可以window端下载后传入服务器:
wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
sudo sh cuda_10.2.89_440.33.01_linux.run

输入accept后:
CUDA Installer
-[X] Driver
    [X] 450.51.06
+[X] CUDA Toolkit 11.0
 [X] CUDA Samples 11.0
 [X] CUDA Demo Suite 11.0
 [X] CUDA Documentation 11.0
Options
Install
直接选择install

报错:CentOS安装nvidia-container-toolkit报错:没有可用软件包

1、设置 docker-ce 存储库:

sudo yum-config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo

2、安装 containerd.io 包: 

sudo yum install -y https://download.docker.com/linux/centos/7/x86_64/stable/Packages/containerd.io-1.4.3-3.1.el7.x86_64.rpm


3、安装 docker-ce 软件包:

sudo yum install docker-ce -y
使用以下命令确保 Docker 服务正在运行:
sudo systemctl --now enable docker


4、设置 nvidia-container-toolkit 存储库和 GPG 密钥:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
将experimental分支添加到存储库列表中:
yum-config-manager --enable libnvidia-container-experimental


5、更新包列表后安装nvidia-container-toolkit包:

sudo yum clean expire-cache
sudo yum install -y nvidia-container-toolkit

配置 Docker 守护进程以识别 NVIDIA 容器运行时:
sudo nvidia-ctk runtime configure --runtime=docker
设置默认运行时后重启Docker守护进程完成安装:
sudo systemctl restart docker

6、验证

docker run -it -d -v /home/data/jt/:/data/jt -v /etc/localtime:/etc/localtime:ro --restart always --net host --name EventDetectorV3 --gpus all jt20240711_gongsi
docker ps
docker exec -it  EventDetectorV3 bash

进入容器后:
nvidia-smi

 

备份指令记录(供参考): 

  488  mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup
  490  cd yum.repos.d/
  493  wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
  495  yum clean all
  496  yum makecache
  497  yum -y install gcc pciutils
  498  yum -y install gcc
  499  yum -y install gcc-c++
  500  yum -y install make
  501  uname -a
  502  lsmod | grep nouveau 
  503  vi /lib/modprobe.d/dist-blacklist.conf
  504  mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
  505  dracut /boot/initramfs-$(uname -r).img $(uname -r)
  506  systemctl set-default multi-user.target
  507  reboot
  508  set +o history;
  509  sh NVIDIA-Linux-x86_64-550.120.run 
  510  nvidia-smi
  511  docker
  512  docker ps
  513  ll
  514  cd jt20240731/
  515  ll
  516    cat x* >test.tar
  517  docker load -i test.tar 
  518  docker images
  519  docker ps
  534  wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
  535  sh cuda_10.2.89_440.33.01_linux.run 
  537  nvcc --version
  538  vi /etc/profile
  539  source /etc/profile
  540  nvcc --version
  541  yum install nvidia-container-runtime
  542  yum update
  543  yum install nvidia-container-runtime
  544  sudo yum-config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
  545  sudo yum install -y https://download.docker.com/linux/centos/7/x86_64/stable/Packages/containerd.io-1.4.3-3.1.el7.x86_64.rpm
  546  sudo yum install docker-ce -y
  547  sudo systemctl --now enable docker
  548  sudo docker run --rm hello-world
  549  distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
  550  yum-config-manager --enable libnvidia-container-experimental
  551  sudo yum clean expire-cache
  552  sudo yum install -y nvidia-container-toolkit
  553  sudo nvidia-ctk runtime configure --runtime=docker
  554  sudo systemctl restart docker
  555  docker ps
  556  docker ps -a
  557  docker rm  EventDetectorV3
  558  ll
  559  cd jt20240731/
  560  ll
  561  docker images
  562  history
  563  docker run -it -d -v /home/data/jt/:/data/jt -v /etc/localtime:/etc/localtime:ro --restart always --net host --name EventDetectorV3 --gpus all jt20240711_gongsi
  564  docker ps
  565  docker exec -it  EventDetectorV3 bash

相关文章:

CentOS安装NVIDIA驱动、CUDA以及nvidia-container-toolkit

0.提前准备 0.1.更新yum源(以阿里为例) 0.1.1 备份当前的yum源 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 0.1.2 下载新的CentOS-Base.repo 到/etc/yum.repos.d/ CentOS 5 wget -O /etc/yum.repos.d/CentOS-Base…...

STM32调试,发现HAL_Init();之后无法调试,甚至无法让程序停下来

参考文档: STM32调试,发现HAL_Init();之后无法调试,甚至无法让程序停下来 - asml - 博客园 症状 最近开始学习STM32Cube,发现新建工程后无法正常调试,过了HAL_Init();之后就无法继续调试了. 无法进行让程序暂停以及停止等操作.并在输出窗口不断刷出 ERROR: Can n…...

Ajax(web笔记)

文章目录 1.Ajax的概念2.Ajax 的作用3.原生Ajax4.Axios4.1Axios的概念4.2Axios入门 1.Ajax的概念 AsynchronousJavaScriptAndXML,异步的JavaScript和XML 2.Ajax 的作用 数据交换:过Ajax可以给服务器发送请求,并获取服务器响应的数据。异步交互:可以在…...

多入口+vite+vue3预渲染方案

如果你的项目要求加载速度要快,我们如果使用传统的vue3+sfc模式去开发,因为只有一个根节点,空白页面加载出来之后js才回去加载组件渲染,这样页面总是有一个短暂的空白。我们这里不讨论服务器端ssr和预渲染方案,仅仅是为了满足比较极端的优化需求,在这种情况下我的这套方案…...

Vue3+Ts函数封装与应用

目录 一、基础函数 二、实际应用 2.1、根据id找到对应的value值(找第一个) 2.2、根据id找到对应的value值(找所有) 2.3、不重复的升序数组找数字(二分查找) 2.4、重复的无序数组找数字(统计个数) 2.5、将数组整理为树结构(省市区为例) 为什么要积累呢?因为面…...

C语言全局变量和局部变量同时应用的题题型[求一堆数组中10个学生的成绩里最高分、最低分和平均分。]

C语言函数 全局变量与局部结合变量题。 本片代码中包含全局变量max和min。 以及局部变量aver。 全局变量运用于从定义变量开始&#xff0c;局部变量运用于定义它的调用函数内。 正文开始: #include <stdio.h> int max0,min0; int main() { int average(int array[…...

深度学习实战94-基于图卷积神经网络GCN模型的搭建以及在金融领域的场景

大家好,我是微学AI,今天给大家介绍一下深度学习实战94-基于图卷积神经网络GCN模型的搭建以及在金融领域的场景。文章首先介绍了GCN模型的原理及模型结构,随后提供了数据样例,并详细展示了实战代码。通过本文,读者可以深入了解GCN模型在金融场景下的应用,同时掌握代码的具…...

.NET 6新特性 | System.Text.Json功能改进

在.NET 6.0中&#xff0c;JSON处理库得到了显著的改进&#xff0c;主要体现在System.Text.Json上。以下是对.NET 6.0中改进的JSON处理库的详细分析&#xff1a; 一、System.Text.Json的引入与优势 在.NET 6中&#xff0c;Microsoft引入了新的JSON库System.Text.Json作为官方推…...

Matlab如何对全局优化算法启动并行计算

在 MATLAB 中&#xff0c;启用并行计算可以显著提高一些优化算法&#xff08;如遗传算法 ga 和粒子群算法 particleswarm&#xff09;的速度&#xff0c;特别是在种群或粒子群较大时。要启用并行计算&#xff0c;可以使用 UseParallel 参数。 1. 启用并行计算步骤 Step 1: 检…...

MYSQL-查看数据库中的存储过程语法(六)

13.7.5.9 SHOW CREATE PROCEDURE 语句 SHOW CREATE PROCEDURE proc_name此语句是 MySQL 扩展。它返回确切的字符串 &#xff0c;可用于重新创建命名的存储过程。SHOW CREATE FUNCTION&#xff0c;显示有关存储函数的信息 &#xff08;参见第 13.7.5.8 节“ SHOW CREATE FUNCTI…...

【深度学习】(12)--模型部署 <连接客户端与服务端>

文章目录 模型部署一、模型部署的定义与目的二、模型部署的步骤三、模型部署的方式四、Flask框架五、实现模型部署1. 搭建服务端1.1 初始化Flask app1.2 加载模型1.3 数据预处理1.4 构建装饰器1.5 完整代码 2. 搭建客户端2.1 服务端网址2.2 发送请求2.3 完整代码 六、运行使用 …...

优化SQL查询的最佳实践:提升数据库性能的关键

SQL 查询是数据库操作的核心&#xff0c;特别是当数据量庞大时&#xff0c;性能问题尤为明显。优化 SQL 查询不仅能减少响应时间&#xff0c;还能提高系统整体的可伸缩性。本文将从索引、查询结构、数据库设计和缓存等方面详细介绍如何优化 SQL 查询以提升性能。 一、索引的使…...

【AIGC视频生成】视频扩散模型(综述+最新进展)

文章目录 一、综述1.1 扩散模型1.1.1 Denoising Diffusion Probabilistic Models (DDPMs)1.1.2 Score-Based Generative Models (SGMs)1.1.3 Stochastic Differential Equations (Score SDEs) 1.2 相关任务1.3 数据集1.4 评价指标 二、年度进展1.runway gen2.1 Gen-1&#xff1…...

如何下载3GPP协议?

一、进入3GPP网页 https://www.3gpp.org/ 二、点击“Specifications &Technologies” 三、点击“FTP Server” 网址&#xff1a; https://www.3gpp.org/specifications-technologies 四、找到“latest”&#xff0c;查看最新版 网址&#xff1a; https://www.3gpp.org/ftp…...

目标检测系统操作说明【用户使用指南】(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型)

1.100多种【基于YOLOv8/v10/v11的目标检测系统】目录&#xff08;pythonpyside6界面系统源码可训练的数据集也完成的训练模型&#xff09; 2.目标检测系统【环境搭建过程】&#xff08;GPU版本&#xff09; 3.目标检测系统【环境详细配置过程】&#xff08;CPU版本&#xff0…...

Vue中使用路由

目录 单页应用程序&#xff1a;SPA - Single Page Application路由 VueRouterVueRouter使用步骤组件存放目录问题 路由模块封装声明式导航 - 导航连接两个类名自定义匹配类名 声明式导航 - 跳转传参Vue路由 - 重定向Vue路由 - 404Vue路由 - 模式设置 编程式导航 - 基本跳转编程…...

【Linux】多线程安全之道:互斥、加锁技术与底层原理

目录 1.线程的互斥 1.1.进程线程间的互斥相关背景概念 1.2.互斥量mutex的基本概念 所以多线程之间为什么要有互斥&#xff1f; 为什么抢票会抢到负数&#xff0c;无法获得正确结果&#xff1f; 为什么--操作不是原子性的呢&#xff1f; 解决方式&#xff1a; 2.三种加锁…...

收藏多年的四款音频剪辑工具你pick哪一个?

在这个时代&#xff0c;音频剪辑已经成为音乐制作、播客、自媒体等领域的必备技能。而随着网络技术的飞速发展&#xff0c;我们不再需要安装庞大的软件&#xff0c;只需一个浏览器&#xff0c;就能轻松完成音频剪辑工作。今天&#xff0c;就让我为大家推荐几款优秀的在线音频剪…...

使用Redis进行在线人数统计时,有哪些性能优化技巧?

使用Redis进行在线人数统计时&#xff0c;性能优化是关键&#xff0c;以下是一些性能优化技巧&#xff1a; 选择合适的数据结构&#xff1a; 对于在线人数统计&#xff0c;可以选择使用Set数据结构&#xff0c;因为它具有自动去重和高效的集合操作特性&#xff0c;非常适合用于…...

前端模块循环依赖问题

模块循环依赖问题 在项目比较小的时候可能不怎么会遇到这个问题&#xff0c;但项目一旦有一定的体量后就可能会遇到了。 我之前做项目时就遇到这个问题&#xff0c;也是总结一篇文章。 比如这种类型的报错 commonjs存在的问题 先讲一下commonjs存在的问题。 CommonJS模块采…...

Springboot指定扫描路径

方式一&#xff1a;通过在启动类的SpringbootApplication中指定包扫描或类扫描 指定需要扫描的包 scanBasePackages{"待扫描包1","待扫描包2", . . . ," "} 指定需要扫描的类 scanBasePackageClasses{类1.class,类2.class,...} 方式二&#xff…...

【Flutter】Dart:环境搭建

Flutter 是一个基于 Dart 的跨平台开发框架&#xff0c;可以帮助我们快速构建移动应用程序。在开始 Flutter 开发之前&#xff0c;我们需要先搭建 Dart 的开发环境&#xff0c;并配置合适的编辑器&#xff0c;比如 VSCode。本教程将引导你一步步完成 Dart 和 Flutter 的环境搭建…...

OpenCV高级图形用户界面(10)创建一个新的窗口函数namedWindow()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 创建一个窗口。 函数 namedWindow 创建一个可以作为图像和跟踪条占位符的窗口。创建的窗口通过它们的名字来引用。 如果已经存在同名的窗口&am…...

水题四道。

我的 水题四道--题目目录 问题 A: 依次输出第k小整数 代码1 问题 B: 第k小整数(knumber) 代码2 树的统计 代码3 枪声问题 代码4 问题 A: 依次输出第k小整数 现有n个正整数&#xff0c;n≤10000&#xff0c;要求出这n个正整数中的第1小的整数&#xff0c;第2小的整数&#xf…...

upload-labs靶场Pass-05

upload-labs靶场Pass-05 大小写绕过 $deny_ext array(“.php”,“.php5”,“.php4”,“.php3”,“.php2”,“.html”,“.htm”,“.phtml”,“.pht”,“.pHp”,“.pHp5”,“.pHp4”,“.pHp3”,“.pHp2”,“.Html”,“.Htm”,“.pHtml”,“.jsp”,“.jspa”,“.jspx”,“.jsw”…...

【AIGC】解锁高效GPTs:ChatGPT-Builder中系统提示词Prompt的设计与应用

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;系统提示词系统提示词的作用与重要性系统提示词在构建GPTs中的作用结论 &#x1f4af;ChatGPT-Builder系统提示词的详细解读OpenAI为Builder编写的系统提示词系统提示词对…...

【JavaEE初阶】深入理解网络编程—使用UDP协议API实现回显服务器

前言 &#x1f31f;&#x1f31f;本期讲解关于TCP/UDP协议的原理理解~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话不…...

C语言复习第3章 函数

目录 一、函数介绍1.1 函数是什么1.2 C语言中函数的分类1.3 函数原型1.4 高内聚 低耦合1.5 C语言main函数的位置 二、函数的参数2.1 实参和形参2.2 函数的参数(实参)可以是表达式2.3 传值与传址(swap函数)2.4 明确形参是实参的临时拷贝2.5 void(如果不写函数返回值 默认是int)2…...

Golang | Leetcode Golang题解之第491题非递减子序列

题目&#xff1a; 题解&#xff1a; var (temp []intans [][]int )func findSubsequences(nums []int) [][]int {ans [][]int{}dfs(0, math.MinInt32, nums)return ans }func dfs(cur, last int, nums []int) {if cur len(nums) {if len(temp) > 2 {t : make([]int, len(…...

conan安装方法简介

因为conan是使用python开发的&#xff0c;所以使用conan需要先安装python环境&#xff0c;这里就不展开python的安装方法了。 conan安装有多种方法&#xff0c;但是比较推荐也是比较简单的一种方法是使用python的pip包管理器安装&#xff0c;相关方法如下&#xff08;Windows和…...