当前位置: 首页 > news >正文

SparseRCNN 模型,用于目标检测任务

SparseRCNN 模型,用于目标检测任务
import logging
import math
from typing import Listimport numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn
#项目完整代码下载链接:https://download.csdn.net/download/huanghm88/89909179#from detectron2.layers import ShapeSpec
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, detector_postprocess
from detectron2.modeling.roi_heads import build_roi_headsfrom detectron2.structures import Boxes, ImageList, Instances
from detectron2.utils.logger import log_first_n
from fvcore.nn import giou_loss, smooth_l1_lossfrom .loss import SetCriterion, HungarianMatcher
from .head import DynamicHead
from .util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from .util.misc import (NestedTensor, nested_tensor_from_tensor_list,accuracy, get_world_size, interpolate,is_dist_avail_and_initialized)__all__ = ["SparseRCNN"]import numpy as np
import torch
from torch import nn
from torch.nn import initclass SEAttention(nn.Module):def __init__(self, channel=512, reduction=16):super().__init__()self.ave_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.weight, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, _, _ = x.size()y = self.ave_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x 

相关文章:

SparseRCNN 模型,用于目标检测任务

SparseRCNN 模型,用于目标检测任务 import logging import math from typing import Listimport numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn #项目完整代码下载链接:https://download.csdn.net/downl…...

【AIGC】第一性原理下的ChatGPT提示词Prompt设计:系统信息与用户信息的深度融合

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯第一性原理与ChatGPT提示词Prompt设计应用第一性原理于ChatGPT提示词Prompt设计系统信息和用户信息的融合实际应用结论 💯系统信息与用户信息的定义和重要性系…...

DeepSpeed性能调优与常见问题解决方案

1. 引言 什么是DeepSpeed? DeepSpeed是由微软开源的深度学习训练优化库,旨在帮助研究人员和工程师高效地训练大规模深度学习模型。基于PyTorch框架,DeepSpeed提供了一系列先进的技术,如ZeRO(Zero Redundancy Optimiz…...

【GESP】C++一级练习BCQM3052,鸡兔同笼

GESP一级知识点:for循环和if的应用。 题目题解详见:https://www.coderli.com/gesp-1-bcqm3052/ 【GESP】C一级练习BCQM3052,鸡兔同笼 | OneCoderGESP一级知识点:for循环和if的应用。https://www.coderli.com/gesp-1-bcqm3052/ …...

Android面试之5个性能优化相关的深度面试题

本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”,和我一起每天进步一点点 面试题目1:如何优化Android应用的启动速度? 解答: 优化Android应用的启动速度可以从以下几个方面入手: 1、 减少主线程工…...

R语言机器学习算法实战系列(六)K-邻近算法 (K-Nearest Neighbors)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍教程下载数据加载R包导入数据数据预处理数据描述数据切割调节参数构建模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve保存模型总结系统信息介绍 K-邻…...

FPGA图像处理之构建3×3矩阵

免责声明:本文所提供的信息和内容仅供参考。作者对本文内容的准确性、完整性、及时性或适用性不作任何明示或暗示的保证。在任何情况下,作者不对因使用本文内容而导致的任何直接或间接损失承担责任,包括但不限于数据丢失、业务中断或其他经济…...

【Linux】进程间通信(匿名管道)

🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12625432.html 目录 进程间通信目的 进程间通信发展 进程间通信分类 管道 System V IPC POSI…...

memset()函数的实现

memset()函数的实现 _CRTIMP void* __cdecl memset (void*, int, size_t); memset()函数的实现 文章目录 memset()函数的实现memset()函数 memset()函数 _CRTIMP void* __cdecl memset (void*, int, size_t);void* memset(void* src, int val, size_t count) {char *char_src…...

STM32CUBEIDE FreeRTOS操作教程(七):queue队列

STM32CUBEIDE FreeRTOS操作教程(七):queue队列 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例&#xff…...

类型转换与字符串操作:数据的灵活变形!

Java中的隐式与强制类型转换:让你轻松驾驭数据 在编程的世界中,数据的类型如同游戏中的角色,赋予它们不同的特性与能力。而在Java中,隐式类型转换与强制类型转换就像是两把利剑,帮助我们在这个复杂的世界中游刃有余。…...

动态规划18:188. 买卖股票的最佳时机 IV

动态规划解题步骤: 1.确定状态表示:dp[i]是什么 2.确定状态转移方程:dp[i]等于什么 3.初始化:确保状态转移方程不越界 4.确定填表顺序:根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接:188.…...

YOLOv8改进 - 注意力篇 - 引入ShuffleAttention注意力机制

一、本文介绍 作为入门性篇章,这里介绍了ShuffleAttention注意力在YOLOv8中的使用。包含ShuffleAttention原理分析,ShuffleAttention的代码、ShuffleAttention的使用方法、以及添加以后的yaml文件及运行记录。 二、ShuffleAttention原理分析 ShuffleA…...

基于Multisim的8路彩灯循环控制电路设计与仿真

1)由八个彩灯LED的明暗构成各种彩灯图形; 2)彩灯依次显示的图形: 彩灯从左至右渐亮至全亮(8个CP) 彩灯从左至右渐灭至全灭(8个CP) 彩灯从右至左渐亮至全亮(8个CP) 彩灯从右至左渐灭至全灭(8个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 3)彩灯图形循…...

完整的模型训练套路 pytorch

**前置知识: 1、 (1).train():将模型设置为训练模式 (2).eval():将模型设置为评估模式 不写也可以(只对特定网络模型有作用,如含有Dropout的) 2、 with…...

2024年十大前沿图像分割模型汇总:工作机制、优点和缺点介绍

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

Notepad++将搜索内容所在行选中,并进行复制等操作

背景 Notepad在非常多的数据行内容中,按照指定内容检索,并定位到具体行,而后对内容行的数据进行复制、剪切、删除等处理动作。 操作说明 检索并标记所在行 弹出搜索框:按下 Ctrl F。 输入查找字符串:在搜索框中输入要…...

[Java EE] IP 协议 | NAT 机制 | 路由选择 | MAC 地址 | 域名解析服务

Author:MTingle major:人工智能 Build your hopes like a tower! 目录 一. 初识 IP 协议 IP 协议报头: 二. IP 协议如何管理地址 NAT机制 路由选择 三. 数据链路层(以太网): MAC地址 四. 域名解析系统 一. 初识 IP 协议 IP 协议工作在网络层,其目标是为了在复…...

赋能特大城市水务数据安全高速运算,深圳计算科学研究院YashanDB数据库系统斩获“鼎新杯”二等奖

第三届“鼎新杯”数字化转型应用优秀案例评选结果日前正式公布,深圳计算科学研究院联合深圳市环境水务集团有限公司申报的《深圳环境水务国产数据库YashanDB,赋能特大城市水务数据安全高速运转》案例,经过5个多月的评审,从4000申报…...

RAYDATA链接PGSQL做图表

1.拖一个脚本进去 2.拖一个柱状图进去 3.双击脚本写代码 using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Ventuz.Kernel; using Npgsql; using System.Threading; using System.Threading.Tasks;public class Script…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...