当前位置: 首页 > news >正文

SparseRCNN 模型,用于目标检测任务

SparseRCNN 模型,用于目标检测任务
import logging
import math
from typing import Listimport numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn
#项目完整代码下载链接:https://download.csdn.net/download/huanghm88/89909179#from detectron2.layers import ShapeSpec
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, detector_postprocess
from detectron2.modeling.roi_heads import build_roi_headsfrom detectron2.structures import Boxes, ImageList, Instances
from detectron2.utils.logger import log_first_n
from fvcore.nn import giou_loss, smooth_l1_lossfrom .loss import SetCriterion, HungarianMatcher
from .head import DynamicHead
from .util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from .util.misc import (NestedTensor, nested_tensor_from_tensor_list,accuracy, get_world_size, interpolate,is_dist_avail_and_initialized)__all__ = ["SparseRCNN"]import numpy as np
import torch
from torch import nn
from torch.nn import initclass SEAttention(nn.Module):def __init__(self, channel=512, reduction=16):super().__init__()self.ave_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.weight, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, _, _ = x.size()y = self.ave_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x 

相关文章:

SparseRCNN 模型,用于目标检测任务

SparseRCNN 模型,用于目标检测任务 import logging import math from typing import Listimport numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn #项目完整代码下载链接:https://download.csdn.net/downl…...

【AIGC】第一性原理下的ChatGPT提示词Prompt设计:系统信息与用户信息的深度融合

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯第一性原理与ChatGPT提示词Prompt设计应用第一性原理于ChatGPT提示词Prompt设计系统信息和用户信息的融合实际应用结论 💯系统信息与用户信息的定义和重要性系…...

DeepSpeed性能调优与常见问题解决方案

1. 引言 什么是DeepSpeed? DeepSpeed是由微软开源的深度学习训练优化库,旨在帮助研究人员和工程师高效地训练大规模深度学习模型。基于PyTorch框架,DeepSpeed提供了一系列先进的技术,如ZeRO(Zero Redundancy Optimiz…...

【GESP】C++一级练习BCQM3052,鸡兔同笼

GESP一级知识点:for循环和if的应用。 题目题解详见:https://www.coderli.com/gesp-1-bcqm3052/ 【GESP】C一级练习BCQM3052,鸡兔同笼 | OneCoderGESP一级知识点:for循环和if的应用。https://www.coderli.com/gesp-1-bcqm3052/ …...

Android面试之5个性能优化相关的深度面试题

本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”,和我一起每天进步一点点 面试题目1:如何优化Android应用的启动速度? 解答: 优化Android应用的启动速度可以从以下几个方面入手: 1、 减少主线程工…...

R语言机器学习算法实战系列(六)K-邻近算法 (K-Nearest Neighbors)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍教程下载数据加载R包导入数据数据预处理数据描述数据切割调节参数构建模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve保存模型总结系统信息介绍 K-邻…...

FPGA图像处理之构建3×3矩阵

免责声明:本文所提供的信息和内容仅供参考。作者对本文内容的准确性、完整性、及时性或适用性不作任何明示或暗示的保证。在任何情况下,作者不对因使用本文内容而导致的任何直接或间接损失承担责任,包括但不限于数据丢失、业务中断或其他经济…...

【Linux】进程间通信(匿名管道)

🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12625432.html 目录 进程间通信目的 进程间通信发展 进程间通信分类 管道 System V IPC POSI…...

memset()函数的实现

memset()函数的实现 _CRTIMP void* __cdecl memset (void*, int, size_t); memset()函数的实现 文章目录 memset()函数的实现memset()函数 memset()函数 _CRTIMP void* __cdecl memset (void*, int, size_t);void* memset(void* src, int val, size_t count) {char *char_src…...

STM32CUBEIDE FreeRTOS操作教程(七):queue队列

STM32CUBEIDE FreeRTOS操作教程(七):queue队列 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例&#xff…...

类型转换与字符串操作:数据的灵活变形!

Java中的隐式与强制类型转换:让你轻松驾驭数据 在编程的世界中,数据的类型如同游戏中的角色,赋予它们不同的特性与能力。而在Java中,隐式类型转换与强制类型转换就像是两把利剑,帮助我们在这个复杂的世界中游刃有余。…...

动态规划18:188. 买卖股票的最佳时机 IV

动态规划解题步骤: 1.确定状态表示:dp[i]是什么 2.确定状态转移方程:dp[i]等于什么 3.初始化:确保状态转移方程不越界 4.确定填表顺序:根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接:188.…...

YOLOv8改进 - 注意力篇 - 引入ShuffleAttention注意力机制

一、本文介绍 作为入门性篇章,这里介绍了ShuffleAttention注意力在YOLOv8中的使用。包含ShuffleAttention原理分析,ShuffleAttention的代码、ShuffleAttention的使用方法、以及添加以后的yaml文件及运行记录。 二、ShuffleAttention原理分析 ShuffleA…...

基于Multisim的8路彩灯循环控制电路设计与仿真

1)由八个彩灯LED的明暗构成各种彩灯图形; 2)彩灯依次显示的图形: 彩灯从左至右渐亮至全亮(8个CP) 彩灯从左至右渐灭至全灭(8个CP) 彩灯从右至左渐亮至全亮(8个CP) 彩灯从右至左渐灭至全灭(8个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 3)彩灯图形循…...

完整的模型训练套路 pytorch

**前置知识: 1、 (1).train():将模型设置为训练模式 (2).eval():将模型设置为评估模式 不写也可以(只对特定网络模型有作用,如含有Dropout的) 2、 with…...

2024年十大前沿图像分割模型汇总:工作机制、优点和缺点介绍

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

Notepad++将搜索内容所在行选中,并进行复制等操作

背景 Notepad在非常多的数据行内容中,按照指定内容检索,并定位到具体行,而后对内容行的数据进行复制、剪切、删除等处理动作。 操作说明 检索并标记所在行 弹出搜索框:按下 Ctrl F。 输入查找字符串:在搜索框中输入要…...

[Java EE] IP 协议 | NAT 机制 | 路由选择 | MAC 地址 | 域名解析服务

Author:MTingle major:人工智能 Build your hopes like a tower! 目录 一. 初识 IP 协议 IP 协议报头: 二. IP 协议如何管理地址 NAT机制 路由选择 三. 数据链路层(以太网): MAC地址 四. 域名解析系统 一. 初识 IP 协议 IP 协议工作在网络层,其目标是为了在复…...

赋能特大城市水务数据安全高速运算,深圳计算科学研究院YashanDB数据库系统斩获“鼎新杯”二等奖

第三届“鼎新杯”数字化转型应用优秀案例评选结果日前正式公布,深圳计算科学研究院联合深圳市环境水务集团有限公司申报的《深圳环境水务国产数据库YashanDB,赋能特大城市水务数据安全高速运转》案例,经过5个多月的评审,从4000申报…...

RAYDATA链接PGSQL做图表

1.拖一个脚本进去 2.拖一个柱状图进去 3.双击脚本写代码 using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Ventuz.Kernel; using Npgsql; using System.Threading; using System.Threading.Tasks;public class Script…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...