如何用示波器检测次级点火系统(一)
写在最前面:
单看标题可能会让你觉得这篇文章的主题是关于检测线圈,火花塞和火花塞插头电线。但我们指的是分析燃烧室内电子的行为。目标是看燃料混合物,阀座,压缩,积碳和其它影响这种特性的症状。最终目的是要学会分析示波器波形的逻辑思路。
有了扫描工具为什么还要示波器呢?因为很少有店铺会为所有车辆都配备专用扫描工具,使用示波器检测汽车驾驶性问题成为另一种选择。扫描工具可能可以检测出失火的位置,但示波器除此之可以做到更多。它能确定失火是在什么条件(转速、负荷)下发生的,并能据此让技术人员推断出故障的原因。因为你可以在相同的负载下或行驶条件下比较每个缸的工作状况,并向客户展示潜在的失火可能并防止复发。
假设你有一个实验室示波器,但是没有或者没有使用点火探头(高压探头)。如果我们能证明在连接示波器之后整个点火分析能在5分钟内完成,你会重新去认识并定义研究燃烧室内的电子行为世界的美妙和观察每个气缸燃油分配的能力吗?
次级点火波形
如图1所见,跳火所需电压是由电路中最大间隙确定的。并不是系统中所有间隙来确定的。一个更好的术语叫“主导间隙”,因为在加压下,击穿火花塞间隙所需的电压会增加。如果0.045英寸(1.143毫米)间隙在燃烧室外跳火需要2KV电压,那么相同间隙在燃烧室内压力下可能需要10KV才能击穿,提供燃料,可以帮助提高电导率电。
图2是个很好的例子,可以看到在失压的气缸中,所需要的击穿电压减小,而燃烧时间增加。相反的另一个击穿电压高,燃烧时间相对短。我们得之击穿电压是必须有的“寄生虫”,会在燃烧室内抢夺燃烧时间。但击穿电压不燃烧燃料,在燃烧时间燃料才被燃烧!混合气稀薄(碳氢化合物降低)造成击穿电压增大甚至比这个更高。因此,绝缘被击穿导致失火是最寻常的,常由磨损的火花塞和稀薄混合气的任意组合产生异常高的击穿电压需求导致的结果。
没有弄清楚原因就更换部件看失火是否消失是徒劳无功的。击穿电压过高超出绝缘能力时,失火发生。然后火花找到燃烧室外侧接地路径。当发生这种情况时,由于燃烧室外侧没有HC维持导电率,产生较高的电阻,导致过高的燃烧电压和过短燃烧时间。
出于实际的目的,此时没有电流流动,直到火花塞跳火燃烧时间开始。当线圈输出能量耗尽,剩余的能量以振荡消散。因为碳氢化合物(燃料)是导体, 它不仅在电离作用过程中起帮助作用,而且在烧时间期间影响电导率。
我们如何知道是插头线呢?
假设在怠速工况下,一个气缸显示出异常高的击穿电压,并且与其他气缸相比燃烧时间要更短。我们需要找出高击穿电压是在气缸内还是气缸外造成的。控制节气门,加速和减速并观察反应。如果击穿电压居高不下,这表明最大的问题时发生在气缸外的。转速增加,示波器会如何反应呢?
转速为2000转时,点火时间提前到上止点前30~40°之间,这时活塞刚刚开始压缩冲程,导致了火花塞跳火的时候压力较低。因此,击穿电压降低表明点火提前是有功用的,并且有压缩。我们就验证了最大的问题确实发生在燃烧室内,而不是燃烧室外。
火花塞脏了会怎么样?
示波器分析需要很多常识。想象一下火花塞脏了会如何在示波器上体现出来。没有图片帮助记忆,只运用你的想象力。没有火花塞间隙,因此没有鼻子和剩余能量。因为碳阻替代了火花塞间隙,线圈能量被消耗完,由从击穿电压尖峰到停止线的弯坡表明。碳污垢的电阻值可高达2兆欧,比由漏油的喷油嘴导致的湿的火花塞需要更高击穿电压。我们怎么区分其中的区别呢?很简单!
喷油嘴泄漏:在低转速下,它看起来像是火花塞脏了,但是在高速下,泄露的油滴可能着火,因为在燃烧事件中,油滴较少。但是当这个气缸点火时,混合气一直过浓,示波器会显示出较低的击穿电压和较长的燃烧时间并且几乎没有鼻子。电脑检测到这个喷油嘴喷油量大(混合气浓)并减少燃油喷射,造成其它气缸混合气过稀(如图3)。有一个例外,按点火顺序漏油气缸的下一缸,得益于漏油气缸过剩的燃油。电脑控制发动机,发动机所有气缸的整机分析告诉我们一个完整故事,并验证诊断,这是非常重要的,这可以节约宝贵的时间。
探索燃烧时间
点火线圈输出被设计为有足够能量保持燃烧,只要燃烧室内有燃料。由于磁场消失决定线圈能量,发动机转速和负载并不影响它。燃烧时间表明,这种能量如何被用于燃烧燃料的。在怠速下建立电气部件的有效性后,燃烧时间成为我们测量导电的一把标尺。
因为该发动机所有气缸和喷油器都是相同均衡的,比较点火模式可以很容易的找到哪个气缸是不同的。
喷油器喷油量过小
在图4中,我们注意到,气缸B燃烧时间较短。在燃烧结束时的高鼻子特别明显,在燃烧时间的后期碳氢化合物的缺乏尤其明显,以一个很高的鼻子结束。这里的线圈似乎在说,“这不是我的错,这儿还有充足的能量”。然而,在气缸B中还可以观察到其他一些东西。在燃烧开始前一个高的击穿电压和高的燃烧线起点,这些证据早已证明混合气过稀。
与在相同转速相同负载下运行良好气缸做比较是很重要的。我们怎么知道气缸A是正常的呢?第一,注意线圈的能量没有被浪费在击穿电压上。第二,考虑整个燃烧过程的燃烧线的电导率应该是平滑的,只要线圈的能量可用。最后,鼻子告诉我们点火线圈能量是怎样被用来燃烧所有燃料的。这是空气,燃料和点火持续时间的完美匹配。
我们很想知道在在哪、何时和如何得出结论。除了位置,示波器能帮助我们知道有多少气缸受影响,在什么转速或负载下发生问题。不需要任何解释示波器图形的技巧来辨别短于或长于平均燃烧时间的古怪所在。任何燃烧时间变短说明电路中有较高阻抗,可能由于较高的击穿电压或混合气稀造成的。较长的燃烧时间表示电路中阻抗比平均阻抗小。
示波器图形解释中有帮助的提示
了解欧姆定律的人都知道,对电阻的影响和对电流的影响是成正比的。当电池接线柱接触不良的时候,产生的电阻只有0.01欧姆,打开大灯,它只会造成0.1V的电压降—亮度上基本没有变化。
然而,在启动过程中,同样的电阻,在300A的启动负载下意味着在启动中电压降低了3伏。这无疑会减慢启动速度。同样也会减慢进气流动和燃油流动。如果你只想要一杯水的话,给花园的水管打个结不会有太大影响,但在灌溉草坪的时候就会出现问题。燃油滤清器被限制在80%时,对怠速工况没有什么差别,但在汽车爬坡时就会出现动力不足。
测试重点简单的说:在所有不同负荷下测试,完成性能分析。因为连接了示波器,可能在车架上花费一分钟或者花20多分钟在试驾上。有不同的选择和方法来进行负荷测试,但它们都具有两个共同点。第一,它需要有人在驾驶座上来执行。第二,导线必须足够长,以连接到车内的设备。
负荷测试的结果
电阻和限制或阻塞都意味着同一件事,当对流量的需求很高的时候,会产生最大的负面影响。让我们研究一些实例。
排气受阻:当发动机不能正常排放尾气时,所有的功能都受到影响。怠速时显示在示波器上的完美燃烧线将变的参差不齐,并且在负荷扰动下,所有气缸的湍流逐渐变差。此外,EGR(废弃再循环的量)将变成正常的两倍或三倍。
在正常情况下, EGR阀会将7%的废气再循环进入进气道。然而,即使一个很小的排气阻力,这个值可能增加到30%甚至更多。暂时限制EGR阀的功能,观察示波器上波形的改善,也是一种验证阻塞的方法。限制将导致体积减少,但不是有时候说的稀混合气。它不影响空燃比。
双列排气门:由分离的两侧组成,如果一侧被限制,可以从另一侧看出端倪。好的一侧(没有被限制)在示波器图形上一个高的鼻子,表示混合气稀,然而有阻力的一侧几乎没有鼻子,表示混合气较浓。让我们假设一侧NO.1有50%的限制。空气流量传感器(MAF)显示此时进气流量为原来的100加上50再除2((100%+50%)/2=75%)为75%。计算机将相同数量的燃料分配给进气管。
好的一侧NO.2吸入100%空气却分配到75%燃料。被限制的一侧NO.1吸入50%空气,却得到了一样的燃料(75%)。这一侧比所需要的燃料多了25%。看看你是否可以找到一个混合气稀的气缸和混合气浓的气缸,将匹配NO.1侧和NO.2侧。
磨损的凸轮凸角:这个问题不是经常发生,但是我们在研究如何去解读示波器波形想要告诉我们信息。图5看起来几乎与喷油量过小的喷油器的例图4或者图7相同,但是不同的是击穿电压需求和燃烧线开始的电压。我们需要与一个好的气缸作比较(看5缸波形)。这是一种混合气体积减少的案例而不是空燃比过低造成的。
当空气和燃油两者体积都减少时,会减小气缸压力,因此会造成较低的击穿电压需求。失火取决于气门升程受到影响的程度。随着凸轮降低20%,转速超过2000转可能就会发生失火,当气门升程降低40%时,转速1600转是可能就开始失火。没有升程,发动机你在任何转速下处于熄火状态。
燃料供应不足:无论燃料减少的根源是燃油泵、燃油管被挤压还是燃油滤清器脏了,示波器是分辨不出差别的。仔细看图6,你会注意到燃烧线上的任何地方都有燃料不足的可能。下一步,是如图所示的简单电流测试。在负载下,发动机可能会开始猛烈震动和断续工作。但在断续的失火发生之前,故障指示灯开始闪烁,在气缸之间随意地移动,并随着负载的增加越来越严重。这就是预防性维修得到的回报的地方。
负荷下的失火:失火故障码告诉我们哪个气缸有问题,这就像蒙着眼睛的诊断,因为你仍然不知道为什么,这种情况什么时候或者多久会重复,并且有多少其它气缸存在同样的隐患。图7-1表明失火是只有约25%与燃烧活跃有关。我们还知道,它不是进气泄漏造成的,因为它仅出现在有负荷时。
我们可以断定启动时混合气不稀,因为击穿电压需求是正常的并且燃烧线没有升高。我们很容易看到它不是一个屏幕脏了或是奇怪的喷射图案。如果这种模式一直存在并且不变化,它并非是可以清洁的,并且可能是启动晚的高电阻问题。更换喷油器就足够了。事实上,示波器可以提供所有详细信息,来避免试验和错误的修理方法。
气门座:这是一个常见但经常被忽视的问题。当一个气门座没有回位,它不会冷却,这可能会导致各种故障。在怠速时用示波器很容易发现,最好在行驶状态下。不管什么原因造成的气门没有回位都会造成压缩时气体逸出。众所周知,在怠速下一个灼热的气门是非常容易察觉的,但在60英里每小时下,小缝隙是没有什么影响的,因为气体没有足够时间去逸出。因此必须在低速时做测试。
在行驶状态怠速时做测试的另一个原因是当点火发生在上止(TDC)点附近,此时气体被压缩到它的顶点。气体逸出造成的影响可以在示波器上看到,如图8,在燃烧线开始处就出现震荡。
因为低压我们将看到一个低的击穿电压,接着是由空气流动造成的火花扭曲。根据频率,这个问题可以追溯到气门磨损、积碳、气门弹簧变弱或者润滑不良。最终的诊断取决于有多少气缸受到影响和故障是间歇性还是永久性的。
示波器的价值是显而易见的,前提是要完全了解它的潜力。让我们假设所有气缸按设计的那样运行。空气进气量是由活塞直径和行程决定的。空气与精确的燃料量相匹配,整个燃烧过程与点火线圈的能量相匹配并几乎不剩下多余能量。所有气缸都是相同的,并遵循精确的燃烧效率模式。任何偏差都会影响燃烧时间并且改变线圈的剩余能量。由于示波器是基于时间的来比较和显示每个气缸的燃烧效率的,所以没有比它更好的测量工具。
作者:Mac Vandenbrink
翻译:有福之人
相关文章:

如何用示波器检测次级点火系统(一)
写在最前面: 单看标题可能会让你觉得这篇文章的主题是关于检测线圈,火花塞和火花塞插头电线。但我们指的是分析燃烧室内电子的行为。目标是看燃料混合物,阀座,压缩,积碳和其它影响这种特性的症状。最终目的是要学会分…...

基于SpringBoot+Vue+uniapp的涪陵区特色农产品交易系统的详细设计和实现(源码+lw+部署文档+讲解等)
详细视频演示 请联系我获取更详细的视频演示 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念,提供了一套默认的配置,让开发者可以更专注于业务逻辑而不…...

bmp怎么转换为jpg?快速批量将bmp转换为jpg
bmp怎么转换为jpg?在日常的数字生活中,我们时常会遇到各种格式的图片文件,它们各自拥有不同的特点和用途。最近,我遇到了一个有趣的小插曲:我从网络上下载了一张精美的BMP格式图片,打算用它作为一篇报告的背…...

centos8配置java环境变量jdk8u422-b05
1. 下载 JDK 8u422-b05 首先,确保已经下载了 JDK 8u422-b05 的二进制文件。如果还没有下载,你可以去 Oracle 官方网站或者其他可信的源下载 JDK 8u422。 2. 安装 JDK 将下载的 JDK 文件解压到 /usr/local/java 目录下: sudo mkdir /usr/l…...

基于SSM的校园拓展活动管理系统
文未可获取一份本项目的java源码和数据库参考。 1 选题背景 校园文化是精神的载体,是青年成长成才的沃土,是一种体现校园的硬件设施、精神风貌、制度体系、办学理念以及办学特色的综合文化。文明程度高、文化气息浓、活动种类多的校园文化不仅能焕发学校…...

Python随机森林算法详解与案例实现
目录 Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1 数据集介绍4.2 代码实现4.3 代码解释4.4 运行结果 5、回归案例:使用随机森林预测波士顿房价5.1 数据集介绍5.2 代码实…...

提示词高级阶段学习day2.1-在提示词编写中对{}的使用教程
首先在 prompt engineering 中,使用 {} 通常是为了标识占位符或变量, 这些占位符可以在实际生成内容时被动态替换。 通过这种方式,prompt 可以更加通用和灵活,适用于不同的输入数据场景。 以下是一个体系化、结构化的教程&…...

2024年,每一个大模型都躲不过容嬷嬷和紫薇
2024年还不上视频生成的大模型公司,还能上桌吃饭吗? 连最积极搞AI的李彦宏,在这件事上也迟疑了。 “百度不碰Sora类的视频生成方向。”李彦宏在近期的2024年Q3总监会上说道。原因在于,10年、20年都可能难以商业化应用。 从Open…...

SpringBoot之RedisTemplate基本配置
公司要求redis配置密码使用密文,但是程序使用的是spring默认的redisTemplate,那么就需要修改配置实现密码加解密。 先搞个加密工具类: public class SM2Encryptor {// 加密,使用公钥public static String encryptText(String pub…...

SparseRCNN 模型,用于目标检测任务
SparseRCNN 模型,用于目标检测任务 import logging import math from typing import Listimport numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn #项目完整代码下载链接:https://download.csdn.net/downl…...

【AIGC】第一性原理下的ChatGPT提示词Prompt设计:系统信息与用户信息的深度融合
博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯第一性原理与ChatGPT提示词Prompt设计应用第一性原理于ChatGPT提示词Prompt设计系统信息和用户信息的融合实际应用结论 💯系统信息与用户信息的定义和重要性系…...

DeepSpeed性能调优与常见问题解决方案
1. 引言 什么是DeepSpeed? DeepSpeed是由微软开源的深度学习训练优化库,旨在帮助研究人员和工程师高效地训练大规模深度学习模型。基于PyTorch框架,DeepSpeed提供了一系列先进的技术,如ZeRO(Zero Redundancy Optimiz…...

【GESP】C++一级练习BCQM3052,鸡兔同笼
GESP一级知识点:for循环和if的应用。 题目题解详见:https://www.coderli.com/gesp-1-bcqm3052/ 【GESP】C一级练习BCQM3052,鸡兔同笼 | OneCoderGESP一级知识点:for循环和if的应用。https://www.coderli.com/gesp-1-bcqm3052/ …...

Android面试之5个性能优化相关的深度面试题
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”,和我一起每天进步一点点 面试题目1:如何优化Android应用的启动速度? 解答: 优化Android应用的启动速度可以从以下几个方面入手: 1、 减少主线程工…...

R语言机器学习算法实战系列(六)K-邻近算法 (K-Nearest Neighbors)
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍教程下载数据加载R包导入数据数据预处理数据描述数据切割调节参数构建模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve保存模型总结系统信息介绍 K-邻…...

FPGA图像处理之构建3×3矩阵
免责声明:本文所提供的信息和内容仅供参考。作者对本文内容的准确性、完整性、及时性或适用性不作任何明示或暗示的保证。在任何情况下,作者不对因使用本文内容而导致的任何直接或间接损失承担责任,包括但不限于数据丢失、业务中断或其他经济…...

【Linux】进程间通信(匿名管道)
🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12625432.html 目录 进程间通信目的 进程间通信发展 进程间通信分类 管道 System V IPC POSI…...

memset()函数的实现
memset()函数的实现 _CRTIMP void* __cdecl memset (void*, int, size_t); memset()函数的实现 文章目录 memset()函数的实现memset()函数 memset()函数 _CRTIMP void* __cdecl memset (void*, int, size_t);void* memset(void* src, int val, size_t count) {char *char_src…...

STM32CUBEIDE FreeRTOS操作教程(七):queue队列
STM32CUBEIDE FreeRTOS操作教程(七):queue队列 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例ÿ…...

类型转换与字符串操作:数据的灵活变形!
Java中的隐式与强制类型转换:让你轻松驾驭数据 在编程的世界中,数据的类型如同游戏中的角色,赋予它们不同的特性与能力。而在Java中,隐式类型转换与强制类型转换就像是两把利剑,帮助我们在这个复杂的世界中游刃有余。…...

动态规划18:188. 买卖股票的最佳时机 IV
动态规划解题步骤: 1.确定状态表示:dp[i]是什么 2.确定状态转移方程:dp[i]等于什么 3.初始化:确保状态转移方程不越界 4.确定填表顺序:根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接:188.…...

YOLOv8改进 - 注意力篇 - 引入ShuffleAttention注意力机制
一、本文介绍 作为入门性篇章,这里介绍了ShuffleAttention注意力在YOLOv8中的使用。包含ShuffleAttention原理分析,ShuffleAttention的代码、ShuffleAttention的使用方法、以及添加以后的yaml文件及运行记录。 二、ShuffleAttention原理分析 ShuffleA…...

基于Multisim的8路彩灯循环控制电路设计与仿真
1)由八个彩灯LED的明暗构成各种彩灯图形; 2)彩灯依次显示的图形: 彩灯从左至右渐亮至全亮(8个CP) 彩灯从左至右渐灭至全灭(8个CP) 彩灯从右至左渐亮至全亮(8个CP) 彩灯从右至左渐灭至全灭(8个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 3)彩灯图形循…...

完整的模型训练套路 pytorch
**前置知识: 1、 (1).train():将模型设置为训练模式 (2).eval():将模型设置为评估模式 不写也可以(只对特定网络模型有作用,如含有Dropout的) 2、 with…...

2024年十大前沿图像分割模型汇总:工作机制、优点和缺点介绍
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

Notepad++将搜索内容所在行选中,并进行复制等操作
背景 Notepad在非常多的数据行内容中,按照指定内容检索,并定位到具体行,而后对内容行的数据进行复制、剪切、删除等处理动作。 操作说明 检索并标记所在行 弹出搜索框:按下 Ctrl F。 输入查找字符串:在搜索框中输入要…...

[Java EE] IP 协议 | NAT 机制 | 路由选择 | MAC 地址 | 域名解析服务
Author:MTingle major:人工智能 Build your hopes like a tower! 目录 一. 初识 IP 协议 IP 协议报头: 二. IP 协议如何管理地址 NAT机制 路由选择 三. 数据链路层(以太网): MAC地址 四. 域名解析系统 一. 初识 IP 协议 IP 协议工作在网络层,其目标是为了在复…...

赋能特大城市水务数据安全高速运算,深圳计算科学研究院YashanDB数据库系统斩获“鼎新杯”二等奖
第三届“鼎新杯”数字化转型应用优秀案例评选结果日前正式公布,深圳计算科学研究院联合深圳市环境水务集团有限公司申报的《深圳环境水务国产数据库YashanDB,赋能特大城市水务数据安全高速运转》案例,经过5个多月的评审,从4000申报…...

RAYDATA链接PGSQL做图表
1.拖一个脚本进去 2.拖一个柱状图进去 3.双击脚本写代码 using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Ventuz.Kernel; using Npgsql; using System.Threading; using System.Threading.Tasks;public class Script…...

UE5里的TObjectPtr TSharedPtr TWeakPtr有什么区别
在 Unreal Engine(UE)编程中,TObjectPtr、TSharedPtr 和 TWeakPtr 都是 指针类型,但它们在生命周期管理和使用场景上有不同的特点。让我们详细分析这些指针的区别和用途。 TObjectPtr TObjectPtr 是 UE5 中引入的新智能指针类型…...